
IJSRST16269 | Received: 01 Nov 2016 | Accepted: 08 Nov 2016 | November-December-2016 [(2)6: 25-30]

© 2016 IJSRST | Volume 2 | Issue 6 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X
Themed Section: Engineering and Technology

 25

Query Optimization for Declarative Crowdsourcing System
Nilesh. N. Thorat

1
, A. B. Rajmane

2

1
ME CSE Student ,

 2
Associate Professor

Department of Computer Science and Engineering, Ashokrao Mane Group of Institution, Vathar tarf, Maharashtra, India

ABSTRACT

Crowdsourcing is a distributed problem-solving, production model that has emerged in recent years. crowd sourcing

is designed to hide the complexities as well as relieve the user from burden of dealing with the crowd data.. The user

is requested to pass sql queries to the crowd system to generate the execution plan. Passed query is executed based

on the alternative execution query plans in crowd sourcing. Here, CROWDOP a cost-based query optimization

approach for declarative crowd sourcing systems is implemented. This considers both cost and latency in query

optimization and provides balance between both of them. For this CrowdOp utilizes three types of queries: join

queries, selection queries, and complex selection-join queries. At the end results are compared and evaluated.

Keywords : Crowdsourcing, query optimization, human intelligence tasks (HIT).

I. INTRODUCTION

Crowdsourcing has attracted growing interest in recent

years as an effective tool for harnessing human

intelligence to solve problems that computer cannot

perform well, such as document translation, handwriting

recognition, audio transcription and photo tagging.

Various solutions have been proposed for performing

common database operations over crowdsourced data,

such as selection (filtering), join, sort/rank and count.

Recent crowdsourcing systems, such as CrowdDB, Qurk

and Deco, provide an SQL-like query language as a

declarative interface to the crowd. An SQL like

declarative interface is designed to encapsulate the

complexities of dealing with the crowd and provide the

crowdsourcing system an interface that is familiar to

most database users. Consequently, for a given query, a

declaratives system must first compile the query,

generate the execution plan, post the human intelligence

tasks (HITs) to the crowd according to the plan, collect

the answers, handle errors and resolve the

inconsistencies in the results.

Declarative querying improves the usability of the

system, it requires the system to have the capability to

optimize and provide a “near optimal” query execution

plan for each query. Since a declarative crowdsourcing

query can be evaluated in many ways, the choice of

execution plan has a significant impact on overall

performance, which includes the number of questions

being asked, the types/difficulties of the questions and

the monetary cost incurred. It is therefore important to

design an efficient crowdsourcing query optimizer that

is able to consider all potentially good query plans and

select the “best” plan based on a cost model and

optimization objectives.

To address this challenge,we propose a novel

optimization approach CROWDOP to finding the most

efficient query plan for answering a query,supporting

cost-based query optimization. Like in traditional

databases, optimization mechanisms in crowdsourcing

systems can be broadly classified into rule-based and

cost-based systems. A rule-based optimizer simply

applies a set of rules instead of estimating the cost to

determine the best query plan. CrowdDB[3] is an

example system that employs a rule-based query

optimizer based on several rewriting rules such as

predicate push-down, join ordering, etc. While rule-

based optimization is easy to implement, it has limited

optimization capability and often leads to ineffective

execution plans. CROWDOP, in contrast, adopts cost-

based optimization that estimates the cost of alternative

query plans for evaluating a query and uses the one with

the lowest estimated cost. Optimizing multiple

crowdsourcing operators. CROWDOP considers three

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

26

commonly used operators in crowdsouring systems:

FILL solicits the crowd to fill in missing values in

databases; SELECT asks the crowd to filter items

satisfying certain constraints; and JOIN leverages the

crowd to match items according to some criteria.

Considering the existing crowdsourcing database

systems, Deco[7] focuses on optimizing FILL operator,

Qurk[10] on optimizing JOIN operator, and the two

recent crowdsourcing algorithms, CrowdScreen[8] and

CrowdFind[9], are designed for optimizing SELECT

operator. CROWDOP supports cost-based optimization

for all three operators. Instead of optimizing the cost of

each individual operator independently, CROWDOP

optimizes the overall cost of all operators involved in a

query and derives the “best” query evaluation plan. Two

key performance concerns in crowdsourcing systems are

monetary cost (how much people pay for crowdsourcing)

and latency (how long people wait for results). A good

query optimizer should consider the tradeoff between

these factors and perform a multi-objective optimization.

Neither single objective solution, i.e., minimizing the

cost but incurring heavy latency nor reducing latency but

incurring high cost, is desirable. We examine recent

crowdsouring works and find most query optimizers

only search for query plans with the minimal monetary

cost. The only approach taking latency into account is

CrowdFind that studies the tradeoff between cost and

latency for finding a limited number of items.

CROWDOP incorporates the cost-latency tradeoff into

its optimization objectives. It is capable of finding the

query plan with low latency given a user-defined budget

constraint, which nicely balances the cost and time

requirement of users. We summarize our contributions

to study 1)cost-based query optimization that considers

cost-latency tradeoffs and supports multiple

crowdsourcing operators. 2) We formalize query

optimization objectives to minimize the latency under

user-defined cost budget. 3) We develop efficient

algorithms for optimizing selection, join and complex

queries.

II. METHODS AND MATERIAL

A. Literature Review

1. Davidson, Khanna, Milo,Roy[1], concluded that

Group-by and top-k are the most basic constructs in

database queries. The criteria used for grouping and

ordering certain types of data – for example unlabeled

photos clustered by the same person ordered by age –

are difficult to evaluate by machines. While evaluating

top-k and group-by queries with the help of crowd the

answer may be either type or value questions. Suppose

that two data elements are given, then answer to a type

question is “yes” if the elements have same type, so they

belong to same cluster or identical group i.e. two data

elements ordered based on answer to value question.

Results from crowd source are fetched using predefined

assumption but it may be incorrect. They introduced

efficient algorithms for top-k and group-by ,problems

in crowd source systems,which gives results with high

probability.

2.Ju Fan, Meiyu Lu, Beng Chin Ooi, Tan, Zhang[2],

concluded that , the web is full featured data in terms of

HTML tables . If these HTML tables are integrated

gives rise to a knowledge repository but semantic

correspondences between web table columns need to be

checked, it can be carried out with help of conventional

schema matching but they won’t produce good result as

sometime it may be incomplete. They proposed system

with two solutions for web table matching which solves

semantic correspondences and schema matching. First,

concept-based approach is designed which deals with

mapping of each column of web table to best concept,

which solves problems for columns which are

disjoint ,due to incomplete values of columns. Second,

hybrid machine crowd sourcing framework deals with

incomplete column with concept matching tasks to the

crowd under a given budget and utilizes the

crowdsourcing result to help the algorithm to produce

the best matches for the rest of the columns.

3.Franklin,Tim Kraska, Ramesh, Reynold Xin[3]

designed CrowdDB system which performs a

computationally difficult functions, such as matching,

ranking, or aggregating results based on fuzzy criteria.

CrowdDB takes input from human with help of crowd

source system for providing information that is missing

from the database which cannot easily got answers

database systems as well as search engines. CrowdDB

have resemble with traditional database system with

some big change. Traditional database systems does not

take human input for query processing. From an

implementation point of view human-oriented query

operators are needed to integrate as well as cleanse

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

27

crowdsourced data. Performance as well as cost depends

on a number of new factors including worker affinity,

training fatigue, motivation and location.

4.Chien-Ju Ho, Jabbari and Vaughan[4], concluded that

Crowdsourcing markets is a tool to collect data from

very different workers. Workers use labels for

classification of common tasks but it may be error prone,

at a particular time it can be treated as spam also. The

solution to this problem can be obtained by collecting

labels for each instance from multiple workers. With the

help of online primal-dual techniques, classification

tasks of task assignment and label assisgnment for

workers can be carried out in heterogeneous way. They

show that adaptively assigning workers to tasks can lead

to more accurate predictions at a lower cost when the

available workers are diverse.

5.H. Park and J. Widom[5] designed comprehensive

system named “Deco” which deals with answering the

query depending on stored relational data together with

data obtained from the crowd . The basic objective is to

fetch best query plan with the help optimized query on

the basis of user estimated monetary cost.Novel

techniques are used in Deco’s query optimizer system

which include cost model that can easily differentiate

between “free” existing data versus paid new data.

Cardinality estimation algorithm deals with changes to

the database state during query execution. Plan

enumeration algorithm uses common subplans

repeatedly in a setting that makes reuse challenging.

6.A. D. Sharma, H. Garcia-Molina,A. Parameswaran,

and A. Halevy[6], proposed a system named CrowdFind

which deals with problem of searching some items

which satisfy fixed properties within data set for humans.

Suppose that a human wants to identify total no of

travelling photos from a travel website, since the data for

this constraints may be very large, also monetary cost

and latency would be also large. They proposed optimal

algorithm which has comparison capacity between

statistic cost versus actual time to evaluate the query.

They study the deterministic as well as error-prone

human answers, along with multiplicative and additive

approximations. Lastly, They study how they may

design algorithms with specific expected cost as well as

time measures.

B. Proposed Work

In this paper, we focus on studying the cost-latency

optimization problems while assuming the accuracy

issue have been adequately addressed. The basic idea of

the algorithm is to first solve the latency bounded cost

minimization problem, for given query Q and a latency

constraint L, finds the query plan with latency bounded

by L and minimum cost. Declarative crowdsourcing is

designed to hide the complexities and relieve the user

the burden of dealing with the crowd. we proposes

CROWDOP, a cost-based query optimization approach

for declarative crowdsourcing systems.

Advantages

 Considers both cost and latency.

 Generates query plans that provide a good

balance between the cost and latency.

 Supports different crowd sourcing operators.

Following techniques are used for proposed work

 Fuzzy criteria is used to perform

computationally difficult functions, such as

matching, ranking, or aggregating results for

missing fields in dataset.

 OPTIFRAMEWORK algorithm is used to

accomplish Cost Minimization objective.

 OPTISELECT algorithm is used to optimize

select query cost.

 OPTIJOIN algorithm is used to optimize join

query cost.

 LATENCYOPTI algorithm is used to optimize

cost for complex query.

C. Proposed Architecture

The proposed architecture consists of six modules.

1. Data Extraction

This module is for generating dataset and extracting into

the data table. This process efficiently reads all the

attribute values from the dataset and loads it into the

specified data table for classification process. Here the

operator called FILL initially finds all the NULL

attributes and replaces the column value with the

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

28

predefined match. So that this extracted data can be

efficiently processed further.

Figure 1: System Architecture

2. Relation Classification

This process is for classify the extracted dataset into

multiple tables. From the loaded dataset table this

classification process separates the columns and groups

them into new table. Separated tables must contain at

least one common attributes to process the queries.

3. Query Plan Generation

Here the query plan is generated based on the query

asked. We generate select, join and complex queries for

the given query. Based on the chosen query type the

query plan is generated. This query plan contains the

well matched query to get the required resultant value.

4. Query Optimization

This module executes the query plan for each query type

offered. For the selection query type it initially read the

query and executes them to fetch the appropriate result.

Likewise, the remaining join and complex queries are

executed and viewed on the table.

5.Crowd Sourcing Executor

Crowd sourcing executor estimates the crowd of each

query execution and stores it on a database for

calculating cost and latency. This execution is done

based on the query execution start time and the end time.

For each query type this process is followed and cost is

estimated.

6. Cost & Latency Calculation

This module shows the cost and latency calculation of

each query execution. The execution cost and latency

may differ based on the query type is used for. Finally it

compares the best query type for executing the given

query and returns- the expected result.

D. Implementation Steps

Figure 2: Implementation Steps

Data Extraction

FILL Operation

Relation Classification

Query Plan

Query Optimization

Cost & Latency

Calculation

Crowd Sourcing Executor

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

29

In first step we load the dataset which is obtained from

website. The data set is in the text file format, first

extract and then transform it to SQLSERVER database.

In second step missing fields from datasets are filled

with default values. In third step dataset is classified into

different relation sets. In fourth step query is obtained

from user for optimization purpose. In fifth step user

query gets optimized for select ,join and complex join.

In sixth step result gets displayed for user submitted

query. In seventh step cost and latency for user query

gets calculated and displayed to end user.

E. Scope

The main goal of the proposed work is to find best query

execution plan based query optimization considering

cost as well as latency constraint

III. RESULT AND DISCUSSION

In the experiments, linear price function b + wx is used

to evaluate cost and latency tradeoff between our

proposed system with other existing systems.

For CSELECT and CJOIN, we set both base charge b

and incremental charge w, while for CFILL, b and w are

set to $0.01 (because filling a missing value is generally

more expensive) and $0.002 (as some attributes have

large domain)

Graph 1: Query cost comparison

Following chart shows budget bounded latency. X axis

represents user cost and y axis represents latency. For

this purpose we used different number of selection

conditions varying from 2 to 5,and note down respective

cost.

Graph 2 : Cost bounded latency

Following chart shows cost on budget. X-axis shows

user required budget and Y axis shows cost of query

evaluation.

Graph 3: Cost on budget

IV. CONCLUSION

The best possible and best effective optimization

algorithm is used for select, join, complex query. In the

present time, simulated as well as real crowd

experiments demonstrate the effectiveness of proposed

query optimizer which produces best query plan which

has a good balance between the cost and latency.

0

10

20

30

40

50

60

70

80

90

100

Select
Query

Join
Query

Complex
Query

Sequential
system

Proposed system

Parallel system

0

1

2

3

4

5

80 100 120 140

RandomPack

ProposedSystem

0

20

40

60

80

100

120

140

160

180

80 100 120 140

RandomPack

ProposedSystem

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

30

V. REFERENCES

[1] S. B. Davidson, S. Khanna, T. Milo, and S. Roy,

"Using the crowd for top-k and group-by queries,"

in Proc. 16th Int. Conf. Database Theory, 2013,

pp. 225–236.

[2] J. Fan, M. Lu, B. C. Ooi, W.-C. Tan, and M.

Zhang, "A hybrid machine-crowdsourcing system

for matching web tables," in Proc. IEEE 30th Int.

Conf. Data Eng., 2014, pp. 976–987.

[3] M. J. Franklin, D. Kossmann, T. Kraska, S.

Ramesh, and R. Xin, "CrowdDB: Answering

queries with crowdsourcing," in Proc.ACM

SIGMOD Int. Conf. Manage. Data, 2011, pp. 61–

72.

[4] C.-J. Ho, S. Jabbari, and J. W. Vaughan,

"Adaptive task assignment for crowdsourced

classification," in Proc. 30th Int. Conf. Mach.

Language, 2013, vol. 1, pp. 534–542.

[5] H. Park and J. Widom, "Query optimization over

crowdsourced data," Proc. VLDB Endowment,

vol. 6, no. 10, pp. 781–792, 2013.

[6] A. D. Sharma, A. Parameswaran, H. Garcia-

Molina, and A. Halevy, "Crowd-powered find

algorithms," in Proc. IEEE 30th Int. Conf. Dta

Eng., 2014, pp. 964–975.

[7] A. G. Parameswaran, H. Park, H. Garcia-Molina,

N. Polyzotis, J.Widom. Deco: declarative

crowdsourcing. In CIKM, pages 1203–1212,

2012.

[8] A. G. Parameswaran, H. Garcia-Molina, H. Park,

N. Polyzotis,A. Ramesh, and J. Widom.

Crowdscreen: algorithms for filtering data with

humans. In SIGMOD Conference, pages 361–372,

2012.

[9] A. D. Sharma, A. Parameswaran, H. Garcia-

Molina, and A. Halevy.Crowd-powered find

algorithms. In ICDE Conference, 2014.

[10] A. Marcus, E. Wu, D. R. Karger, S. Madden, and

R. C. Miller.Human-powered sorts and joins.

PVLDB, 5(1):13–24, 2011.

