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ABSTRACT 
 

On the ground of the definition of arbitrary function of one argument and the mutual and unambiguous 

correspondence between the values of the function and argument, the following concepts have been deveined:  

 

a) Absolute average and differential linear density of the function and argument; 

b) Relative linear density of one function toward another function; 

c) Relative linear density of the argument of one function toward the argument of another function. 

 

The conditions are shown under which these definitions apply: continuity and differentiability of the function; 

monotony of the function; equal quality of the arrays of values of argument and function and the examination has 

been done of the specified densities.  

 

The generalization of the concepts of the density of function and argument has been done in the case of a function of 

two and three variables and the theorem on projections of vector quantity and tensor quantity on the co-ordinate 

axes and planes has been proven. 

Keywords: Density of Function, Monotony of Function. 

 

I. INTRODUCTION 

 

Density of function of one variable 

Definition : Let consider an arbitrary function y = f (x) 

of one variable [1] defined in the interval [x1, x2]. The 

graphic of the function is presented on Figure 1.  

 

 

Figure 1.  Graphic of the arbitrary function 

We will impose the following conditions on this 

function:  

 

1. f (x) to be continuous and differentiable in this 

interval.  

2. The function to be monotonous in the interval.  

3. The arrays of values of the argument and function to 

have equal quality.  

 

Let denote the array of values of the argument by {x}. 

This array is continuous with power of continuum 

(contains all real numbers in the interval [x1, x2]). The 

number of elements of it is infinitely large: Nxi → ∞. 

Corresponding array of values of the function {y}, is 

also continuous, with power of continuum in the interval 

[y1, y2] and number of elements: Nyi → ∞. According to 

the definition of the function and condition 2) between 

the elements of {x} and {y} exists mutual, unique and 

reversible correspondence: Nxi ↔ Nyi, i.e. on each 

element of the one array corresponds one well-

determined element of the other array and vice versa.  
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1. Absolute Average Densities 

 

Let define the concept of absolute average linear density 

of the array of values of the argument as:  
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(It is clear that according to this definition  x  )  

 

We shall accordingly define the concept of absolute 

average linear density of the array of values of the 

function (the average density of the function) as:  
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as here y  as well.  

Of the mutual and unambiguous correlation between the 

values of {x} and {y} follows that:  

 {Nyi} = {Nxi}  

Then above:  

 xNNy xxiyiy     

Or:                      1  
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It is seen that the density of the function may be equal to 

or different from the density of the argument.  

 

2. Absolute differential densities  

 

The same definition applies to the concepts of absolute 

differential linear density of the arrays of values of the 

argument and function when the intervals dx and dy are 

infinitesimals (fig. 1):  
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3. Relative Density of the Function  

 

Under the relative linear density of one function y1 = f1 

(x) toward another one y2 = f2(x) (Figure 2), defined, 

continuous, differentiable and monotonic in the interval 

[x1,  x2] we shall understand respectively:  
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Figure 2.  Relative density of the function 

 

4. Relative Density of the Argument  

 

Because of the reversibility of functions we can also 

consider the relative density of the argument of one 

function y1 = f1 (x΄) toward the argument of another such 

function y2 = f2(x΄) at the equal density of the arrays of 

values of functions: ρ1y = ρ2y (fig. 3).  

 

Accordingly, we shall have:  
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The same concerns to differential densities of the 

arguments as well.  
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Figure 3. Relative density of the argument 

A question remains open with defined in such a manner 

density of the function and density of the argument: why 

the density of the corresponding arrays {x} and {y} 

changes – whether the distance between their values is 

changed (which contradicts to their continuity with 

power of continuum) or the values themselves increase 

their size (which contradicts the fact that they are 

presented on the number axis as points without any size)? 

 

II. METHODS AND MATERIAL 
 

A. Examination of the density of function 

 

As can be seen from Figure 1, the relationship between 

ρy and ρx is determined by the derivative of the function: 

΄y׀ ׀= ׀ df׀/dx € [0, ∞):  

  1  
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When ׀у΄1 < ׀  follows ρy < ρx, when: ׀y΄1 > ׀  - ρy > ρx. 

Only when ׀y΄1 = ׀  - ρy = ρx. When ׀y΄0 = ׀ (f(x) = const)  

ρy → ∞, and when:  ׀ y΄׀ → ∞  ρy → 0.  

 

We shall consider that the differential density of the 

array of the argument is equal throughout the whole 

interval [x1, x2]. Then for the relationship between the 

average and differential density we shall have:  
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as generally ρy ≠ const.  

Here also the relationship between the differential 

relative densities of two functions is determined by the 

relationship between their derivatives:  
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Example: (Fig. 4).  

 

Let consider two functions: y1 = 2x и y2 = x
2
 , defined in 

the interval [x1=2, x2] with derivatives: 
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. The 

densities of their arguments are equal: ρx = const. 
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We also have:  
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Figure 4.  Examination of the density of two functions 

 

For the average densities of both functions we have 

respectively:  
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B. Extension of the Concepts for the Density of 

Function and Argument. 

 

We shall try to expand the concepts of density of 

function and argument as we release from the imposed 

above conditions.  

 

1. Unlimited intervals of the argument and function  

 

When definitional interval of the argument is unlimited: 

x € (-∞, + ∞), and range of values of the function is 

unlimited as well: y € (-∞, +∞), the concepts of 

differential density of function and argument do not 

change. The concept of average density of function 

remains unchanged as well, as now it is possible: 

),0[ y   

 

2. Non-monotony of function.  

 

If the function y = f (x) is not monotonous in the interval 

Error! Not a valid link. then the mutual and 

unambiguous correspondence between the number of 

values of argument and function disturbs:  

 {Nyi} ≠ {Nxi}  

(on a particular value of x can correspond several values 

of the function у and vice versa - figure 5 a, b).  

 

 
(a) 

 
(b) 

Figure 5.  Density of non-monotony function 

 

In this case, the concepts of differential density of 

function and of argument can be generalized considering 

the fact that they are defined for infinitesimal intervals 

dx and dy. They remain the same except for the case 

where  ,0/dxdy  (Figure 5 b, a, respectively). 

There ρу → ∞ or ρу → 0.  

 

Regarding the concepts of average densities of function 

and of argument generalization can be done in the 

following way:  

 

We divide the arrays of values of the function and 

argument to subarrays where the mutual and 

unambiguous correspondence is complied: Nyi = Nxi.  

(For example, for figure 5a these are intervals: [x1, x2] 

and [y1, ymax], respectively: [x1, x2] and [y1, ymin]; for 

Figure 5 b. - [y1, ymax] and [x1, x0], respectively: [ymax, y2] 

and [x0, x2]). For those subarrays concept of average 

density of function and argument is in force.  

 

Example (Figure 6).  

Let consider the function: 22 xRy   with 

definitional array of the argument: –R ≤ x ≤ R. The 

graph of this function is a circle in the plane 0ху with a 

centre in point 0 and with radius R. The function is non-

monotonous in this interval as on the each value of x 

correspond two values of y and vice versa.  
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Figure 6.  Density of non-monotony function 

For the differential densities of the function and 

argument we have:  
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The derivative of the function is:  
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In order to find the average densities of the function and 

the argument we divide arrays {x} and {y} in parts 

between points (AB), (BC), (AD) and (DC). Then:  
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For the part (AD):  
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For the part (DC):  
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At the end:  

constxyABCDyDCyADyBCyAB     

 

3. Quality of arrays {x} and {y}.  

 

Let consider the function: y = sin x = sin φ, defined in 

the interval x = φ € [0, π/2]. In this interval it is 

continuous and monotonous. The graph of the function 

is presented on Figure 7.  

 

 

 
Figure 7.  Equal quality of arrays {x} and {y} 



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) 

 

243 

In accordance with conditions the arrays {x} and {y} 

must have one and the same quality. On the vertical axis 

(ordinate) we have a length as part of the radius of the 

trigonometrically circle with R = 1. On the x axis 

(abscissa) we have the value of the angle φ. However, it 

can be measured in [deg], [rad], [grad], etc. In order the 

array {x} to have the same quality as {y}, its values 

must reciprocate to length. This is possible only if the 

angle φ is measured in [rad]. Then the perimeter of 

circle S, corresponding to φ is: S = Rφ = x and the array 

{x} has the same quality (length) as the array {y}.  

(Measurement of φ in other units will violate this 

condition). Then: y = R sinφ and x = S = R φ, as R = 1.  

 

Accordingly, we shall have:  
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In such ways we can expand the concept of density of 

function and argument.  

 

C. Density of function of two variables. 

 

Let consider an arbitrary, continuous, differentiable and 

monotonous function of two variables: z = f (x, y), 

defined in the intervals [x1, x2] and [y1, y2] (Figure 8) [1]. 

The graph of the function is a monotonous surface in 

space (x, y, z) with an area Sz, and the array of values of 

the arguments is plain lying in the plane (0xy) with an 

area Sxy.  

 

On each point of the plane of the argument: (Nxi, Nyi) 

corresponds mutually and uniquely, exactly specified 

value of the function Nzi. Similarly with the function of 

one variable can be defined concepts average surface 

absolute density of the function and its arguments:  

 

Figure 8.  Density of function of two variables 
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(of all surfaces the smallest area has the plane), 

differential absolute density:  
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and relative density of one function to another function:  
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Everywhere areas Sxy and Sz will be calculated with 

surface integrals.  

 

If the function: z = f (x, y) is not monotonous, the 

concept of average density is effective for those 

subintervals in which it is monotonous, but the 

differential densities preserve. Here unlimited intervals 
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can be considered as well. The quality of the arrays {x, y} 

and {z} must be with the same dimensions of the surface.  

 

D. Density of Function of Three Variables. 

 

Everything said until now here is easily generalized for 

arbitrary, continuous, differentiable and monotonous 

function of three variables: f (x, y, z), which is defined 

in the spatial area of its arguments: [x1, x2], [y1, y2], [ z1, 

z2], representing parallelepiped with volume Vxyz [1]. 

The graph of such a function is a spatial body with 

volume Vf ≥ Vxyz in a 4-dimensional space. Respectively 

volume densities of the function and its arguments can 

be defined in the following type:  
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and relative density of one function to another function:  
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Everywhere volumes Vxyz and Vf  shall be calculated 

with volume integrals.  

 

And here, as well, if the function: f (x, y, z) is not 

monotonous, the concept of average density is 

meaningful only for those intervals where it is of 

monotonous sense, and the differential densities 

preserve. Intervals can be illimitable. The quality of the 

arrays {f} and {x, w, z} must be one and the same – 

with dimension of volume. 

 

E. Theorems of the Projections. 

 

We shall prove two important theorems for projections 

of vector quantities and tensor quantities: 

A. Theorem for the projections of vector quantity. 

 

The projections of each vector AB on the coordinate 

axes have the average densities greater than or equal to 

the density of the vector itself: 

 

ABABzABAByABABx      ,      ,    

 

The proving is simple, considering that each vector AB 

represents directed segment with a length |AB|, which 

has a length greater than or equal to the length of its 

projections on the coordinate axes. 

 

zyx ABABAB ;;AB  

 

B. Theorem for the projections of tensor quantity of 

second rank. 

 

The projections of each tensor of second rank on the 

coordinate axes have average densities greater than or 

equal to the density of the tensor itself. 

 

Proving: Each tensor of second rank can be divided into 

symmetrical and anti-symmetrical part [2]. The 

symmetrical part is presented in three-dimensional space 

with tri-axial ellipsoid whose projections on the 

coordinate planes 0xy, 0yz, 0xz have higher average 

densities from the projections of the ellipsoid on the 

plains of its own coordinate system: 0ab, 0bc, 0ac, 

where a, b, c are its semi-axles. Anti-symmetrical part of 

the tensor is represented by a vector, for which we have 

already proved that its projections on the coordinate axes 

have density greater or equal to the average density. 

 

III. RESULT AND DISCUSSION 
 

The introduced density of function and density of 

argument are new qualities in the mathematical analysis. 

They are holding a true when the function has the 

following conditions: 

 

1. The function is continuous and differentiable in an 

arbitrary interval.  

2. The function to be monotonous in this interval.  

3. The arrays of values of the argument and function to 

have equal quality.  
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These qualities have many applications in the 

mathematics and physics. 

 

The authors dedicate this work to Tzvetana Nedeva a 

true friend and colleague- mathematics. 
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