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ABSTRACT 
 

We have studied the transverse Ising system in terms of pseudo-spin variables S with arbitrary pseudo-spin using 

Green’s function technique and method proposed by Tserkovnikov. The phase diagrams, the longitudinal and the 

transverse polarizations are obtained. Numerical results are performed and analyzed for the particular cases S=3/2 

and S = 2.  
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I. INTRODUCTION 

 

The Transverse Ising model (TIM) has been one of the 

most actively studied systems in statistical mechanics 

and has been used as an elementary  model for a variety 

phenomenon. The TIM proposed by Blinc and de-Genne 

has been already investigated by the use of various 

techniques and approximations [1]. It has been applied 

to a wide variety of physical systems including order-

disorder and displacive type ferroelectrics, induced 

moment ferromagnets and cooperative Jahn-Teller 

systems [2-4]. In the most of these applications, the 

operators are in the pseudo-spins presentation which 

describes the state of two-level systems, and the 

transverse field describes transitions between these 

levels. On the other hand, TIM for spin S higher than 

S >1/2 has also received some attention. As far as we 

know, only a few works have made contact with the 

quantum spin-S TIM using high-temperature series, 

discretized path-integral representations or effective 

field theories [5-9]. Double-time Green's functions (GF) 

are used within a mean-field treatment for all spins of 

the two-sublattice TIM [10].  

 

Over the last decade, Transverse Ising model for 

pseudo-spin S = 1/2 in combination with a modified 

Heisenberg model used to describe the mechanisms of 

magneto-electric coupling in the so-called multiferroics. 

They are materials which show spontaneous magnetic 

and electric ordering in the same phase[11]. In many 

papers the electric properties in multiferroic EuTiO3 [12], 

type-I multiferroics [13, 14], BiFeO3 [15], hexagonal h-

RMnO3 compounds [16], RMn2O5 [17] and composite 

multiferroic thin films [18] are studied using the 

transverse Ising model with S = 1/2. This could be 

correct for example in the case of h-RMnO3 and RMn2O5. 

The h-RMnO3 is a typical improper ferroelectric. The 

polarization is produced by the uncompensated 

displacement of R ions along the c direction, where one-

third of R ions shift upwards and two-thirds of R ions 

shift downwards, indicating that RMnO3 has two 

opposite polarized states [19]. In the multiferroic state of 

RMn2O5 with non-collinear Mn spin order and helical or 

cycloidal geometry, the actual symmetry group is 

Pb21m, which allows for a macroscopic electric 

polarization along the b axis [17, 20]. But this is not the 

case in BiFeO3 (BFO). The structure of BFO which is a 

lone pair multiferroic is characterized by two distorted 

perovskite blocks connected along their body diagonal 

denoted as pseudo-cubic [1,1,1] to build the 

rhombohedral unit cell [21, 22]. BFO exhibits both 

ferroelectricity and ferromagnetism, i.e. multiferroic 

with TC = 1100 K and TN = 643 K. The ferroelectric state 

is realized by a large displacement of the Bi ions relative 

to the FeO6  octahedra, leading to the formation of eight 

possible polarization variants   
   with i = 1,2,3,4, "+" 

and "-" stand for up and down polarization directions, 

respectively. These eight polarization directions 
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correspond to four structural variants (the polarization is 

along the four cubic diagonals)  [22- 24]. This means 

that for the electric subsystem is more appropriate to 

describe using TIM with pseudo-spin S = 7/2.  

 

The aim of the present paper is to create the self-

consistent theory of TIM with arbitrary spin (S > 1/2) 

using retarded Green’s functions and method proposed 

by Tserkovnikov [25].  

 

II. METHODS AND MATERIAL 
 

The Ising model with transverse field Ω and correlated 

tunneling is defined by: 

 

   
 

 
 ∑   

 
  

 

 
∑      
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(1)                       

Here Ω is the transverse field (the tunneling frequency), 

  
    

  are the components of the pseudo-spins, Jij is the 

exchange pseudo-spin interaction and  Kij is the constant 

of correlated tunneling.  This Hamiltonian describes a 

phase transition different form pure Ising case. In all 

intervals of the  tempetarure esixt an order    
    . 

At high temperatures the S
z
 components are disordered 

and at temperatures below TC an ordered phase is 

appeared with    
    . The role of transverse field 

Ω is to prevent this order. When Ω increases the 

transiton temperature decreases and at  a given critical 

value ΩC transition temperature becomes zero. The last 

term in equation (1) specifies the  influence of the tunnel 

motion of a given particle on the tunnel motions of 

neighboring particles.  

 

In order to observe the correlation functions, and the 

order’s parameters we use the retarded commutator 

Green’s function which is defined as [26]:  
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After time Fourier transformation the equation of 

motions and labor-intensive calculations for the GFs we 

get: 
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where    ∑       
   ,   ∑       

      

  ∑       
     and          ∑       

     

 

After solving these equations the ordered parameters and 

the pseudo-spin energy can be determined from the GF 

via the spectral theorem. A solution is possible by 

establishing a closed system of equations by decoupling 

the higher-order GF on the right side. For the exchange 

interactions, we use a generalized Tyablikov (or RPA) 

decoupling. 

         

First, we will calculate     
   and    

   from the 

equation of motions: 
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The calculations show: 

   
  

      

   
 (  

 )                                                          

(5) 

then: 

    
   

 

 
(   

      
  )  

    

   
 (  

 )    

i.e. 



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) 

 

416 

   
   

      

   
   

                                                            

(6)            

 

Similarly:  

 (  
 )

 
  

 

 
 (  

    
 )

 
    

 
 

 
. (  

 )
 

      
   

    (  
 )

 
 /                     

(7) 

 

We define the following equations of motions: 
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If we take into account eq. 8 we have: 
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Similarly: 
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If we take into account eq. 5 we get: 
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From eq. 3, eq. 10 and eq. 11 we have: 
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The poles of the Green’s function    
    we determine 

from the equation: 
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Eq. 12 we can be rewritten as: 
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Following Tyablikov [26]     
    in back space has a 

following form: 
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where j=1, 2, 3, 4 and     is the energy of i-branch of 

elementary excitations in the back space.   

          

For the spectral function we get: 
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On the other hand is valid: 
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From eq. 15 and eq. 16 we obtain a system of equations 

to determine the average value of  (  
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for                   . 

 

For the last term of eq. 16 for n = 2S-1 we get:  
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 Finally, we introduce the relative polarization :  
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The last two equations 17 and 18 give us the full set 

of equations for determining the  (  
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1. For S = 1/2 i.e.  n = 0 we get: 
 

 
 

 

 
  

 
  (  

 )
 

    
 
∑    

 
 

 

 
 

 
  

 
∑    

 
 

 

  

 (  
 )

 
  

 

 
  

Then for   

 

 we obtain: 

     
 

   ∑          ∑     
 
 

 

 

2.For S = 1 i.e n = 0, 1 we have: 
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and so on for an arbitrary pseudo-spin. 

 

Let us discuss the dispersion  ( ) in the black space 

(eq. 14) where q- is the wave vector. Due to the average 

the dispersion relation is a function of temperature. For 

     we find: 
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The phase transition is determined by                  
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 The gap above     and below    the phase transition are 

the temperature dependent and tend for      to zero. 

The ratio is given by: 
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III. RESULT AND DISCUSSION 
 

Now we will show results for the spin-3/2 and spin-2 for 

the transverse Ising model. In Fig.1 and Fig.2 are 

presented the phase diagrams in the     space for the 

honeycomd z = 3, square z = 4 and simple cubic lattices 

z = 6. It is clear that the effect of a transverse field on the 

critical temperature in the higher-spin transverse field 

Ising systems is very similar that of the spin-1/2 TIM.  It 

is clear that the critical temperature TC gradually 

decreases from     and rapidly vanishes when the 

transverse field approaches some critical value   . Our 

calculations for    are given in Table I. The results are 

in good quality coincidence with the data presented in [5, 

6]. We can also that the value of    increases with 

increasing pseudo-spin value S. It is agreement with 

other works.  

 

   (   ) 

z S=3/2 S=2 

3 0.37 0.52 

4 0.53 0.73 

6 0.83 1.12 

8 1.13 1.53 

12 1.73 2.32 

 

Table I. The values of the critical transverse field    for 

different lattices. 

 

In fig.3, fig.4 and fig.5 are presented the temperature 

dependences of the longitudinal polarization      the 

order parameter   (  )   and the transverse 

polarization      for the honeycomb lattice z = 3 

when the transverse field is fixed at some typical values. 

This quantities display qualitatively the same behavior 

as the case of spin-1/2.  

 
Figure 1. The phase diagram of the spin-3/2 transverse 

Ising model for the honeycomb z = 3, square z = 4 and 

simple cubic lattices z = 6. 
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Figure 2. The phase diagram of the spin-2 transverse 

Ising model for the honeycomb z = 3, square z = 4 and 

simple cubic lattices z = 6. 

 
Figure 3. The temperature dependence of longitudinal 

polarization      (solid line) and of order parameter 

  (  )   (dashed line) for the spin-3/2 TIM on the 

honeycomb lattice z = 3 when the transverse field   is 

a/ 
 

   
     and b/ 

 

   
    . 

 
Figure 4. The temperature dependence of longitudinal 

polarization      (solid line) and of order parameter 

  (  )   (dashed line) for the spin-2 TIM on the 

honeycomb lattice z = 3 when the transverse field   is 

a/ 
 

   
     and b/ 

 

   
    . 

 
Figure 5. The temperature dependence of the transverse 

palarization       for spin-3/2 (solid line) and spin-2 

(dashed line ) for the honeycomb lattice z=3 for different 

values of the transverse field a/ 
 

   
     and b/ 

 

   
     . 

 

     (   ) 

K/J S=3/2 S=2 

0.00 12.34 17.98 

0.10 9.12 14.01 

0.20 6.28 11.34 

0.25 4.56 7.87 

0,30 1.78 3.67 

 

Table II. The values of the critical transverse field    

for different values of K for the honeycomb lattice z = 3. 

At Table II is numerically calculated the critical 

temperature of the phase transition    for different 

values of correlated tunneling interaction K. It is clear 

when K increases the temperature of phase transition 

decreases. There is a critical value KC above which the 

phase transition is not observed. When the value of S 

and the number of the nearest neighbours increase the 

KC increases too. For instance for honeycomb lattice z = 

3, for S = 3/2 KC/J = 0.456 and for S = 2 KC/J = 0.629; 

for cubic latice z= 4, , for S = 3/2 KC/J = 0.497 and for S 

= 2 KC/J = 0.703. 

 

These numerical calculations clearly demonstrate the 

utility of the Green’s functions of using the method of 

Tserkovnikov which is appropriate for the spin problems. 
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IV. CONCLUSION 
 

We have presented new approximation to treat the TIM 

system on the base of retarded Green’s functions and 

method proposed by Tserkovnikov [25] for arbitrary 

spin S > 1/2. The self- consistent equations obtained are 

solved and the equilibrium properties of the system a 

discussed. Because of analytical results, this work will 

probably have a wider applicability than others methods, 

especially when one wants to get the temperature 

dependence in a wide interval of electric properties in 

the TIM with arbitrary spin. Because of the 

mathematical simplicity and versatility of our 

formulation, this method will be very useful for studying 

and understanding a more complicated physical system 

like the multiferroics. To our knowledge, the study of 

TIM with the above method is given for the first time. 
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