Energy Transfer in Co-doped KMgCl₃: Ce³⁺-Eu³⁺ Phosphor
Anuradha Poddar*, V. M. Pendsey
Department of Physics, DRB Sindhu Mahavidyalaya, Nagpur, Maharashtra, India

ABSTRACT

The present work discusses photoluminescence in KMgCl₃ singly doped by Ce³⁺ ions and Eu³⁺ ions independently and co-doped. Co-doped phosphor showed transfer of energy between a sensitizer ion Ce to an activator ion Eu and resulted into enhancement in photoluminescence emission. Phosphors have been prepared using wet chemical synthesis. XRD pattern of KMgCl₃ matched with the standard JCPDS file 20-0905. The PL emission spectra have been observed for Ce³⁺ at 353nm and 375nm due to 5d-4f transition at excitation wavelength of 338 nm. PL of Eu³⁺ is peaking at 596nm and 616nm at excitation wavelength of 394 nm in orange and red region due to 5D₀-7F₁ and 5D₀-7F₂ transition.

KMgCl₃:Ce³⁺-Eu³⁺ have two peaks in PL emission spectra in orange-red region of the spectrum at 596 nm and 616nm by UV excitation at 268nm due to transitions of Eu³⁺ ion with improved luminescence properties. The energy transfer from Ce³⁺ to Eu³⁺ has been discussed based on the excitation and emission spectra.

Keywords: Photoluminescence, Phosphor, XRD, Co-doped

I. INTRODUCTION

Over the last few years, intensive research has been devoted to the development of efficient luminescent materials. In the view of developing new luminescent materials, interest in the luminescent properties and energy transfer process was developed. A number of reports have appeared describing spectroscopic properties of pure and activated sulphides and revealing applications. Gedam et al. have reported the halosulphate materials as phosphors [1–8]. Moreover mixed sulphates are also known to be good PL and TL materials. Sahare et al. [9–11] have studied mixed sulphate systems for the applications in dosing of high energy radiations using TL technique. They synthesized and characterized K₂Ca₂(SO₄)₃:Eu, Dy [12] and K₂Ca₂(SO₄)₃:Eu [13]; LiNaSO₄:Eu [14] and LiNaSO₄:Eu,Dy [15]. Energy transfer between pairs of rare earth ions at dilution levels below the self-quenching limits is through multi polar interactions like dipole–dipole interactions or dipole–quadrupole interactions [16–18]. The energy transfer from Ce³⁺ to different activator ions in different host lattices has been reported [19–21].

Study on crystal structure, PL, TL, TL response, fading and reusability by doping RE and transition metals as well as energy transfer from
Ce³⁺→Eu²⁺→Eu³⁺ in K₂Ca(SO₄)F has been reported elsewhere [22-24]. We have previously studied PL characteristics of phosphor (KMGSO₄F:Dy/Eu) [25].

The objective of the present work is to study luminescence in the host, prepared at room environment.

According to the referred data [26] the Carnallite (KMG₃C₁₂·6H₂O, hydrous magnesium and potassium chloride) crystal structure has the following parameters. It has orthorhombic symmetry class and usually displays granular structure. It belongs to Pbnn space group and has a hardness of 2.5, the same as the nail. It is soluble in H₂O. The Unit Cell Parameters are a=9.5980, b=16.1410, and c=22.5190. It has number of formula Unit, Z=12 and Unit Cell Volume, V_c =3488.67Å³. Number of atomic position per full Unit Cell, P/U=132 and Molar Volume, V_m=175.11cm³/mol. Its R-factor µ =108.752MU,1/cm. Mass attenuation coefficient, µ /p=68.548cm²/g. Figure 1(A) shows the crystal structure of KMG₃Cl.<nub>

II. EXPERIMENTAL DETAILS

The sample KMG₃Cl: Ce³⁺, KMG₃Cl: Eu²⁺ and KMG₃Cl:Ce³⁺,Eu³⁺ were prepared by Wet chemical synthesis (WCS). MgCl₂ and KCl of AR grade were taken in a stoichiometric ratio and they are dissolved separately in double distilled de-ionized water and mixed together, resulting in a solution of KMG₃Cl. Then water-soluble sulphate salt of Cerium, or Europium was added to obtain KMG₃Cl:Ce³⁺, Eu³⁺ in liquid form was synthesized by adding water-soluble sulphate salt of Cerium (2mol %) and Europium ((a) 0.05,(b)0.1,(c)0.5mol%). Then the solution was evaporated at 80°C and then slowly cooled at room temperature. Compounds formed by this route are hygroscopic and catch moisture if left in the open, so they are annealed in at 400°C for 2 hour under normal atmosphere. The resultant polycrystalline mass was crushed to fine particle in a crucible. The powder was used in further study. The formation of
pure compound was confirmed by taking the X-ray diffraction (XRD). The photoluminescence (PL) emission spectra of the samples were recorded using Fluorescence spectrophotometer (Shimatzu RF-5301 PC) fitted with a sensitive photomultiplier. Emission and excitation spectra in the 250–450nm and 350–650 nm range were recorded. The spectral slit width of spectrophotometer was kept at 1.5 nm.

III. RESULTS AND DISCUSSION

A. X-ray diffraction (XRD)

The XRD of KMgCl₃ (Figure 2) pattern did not indicate presence of the constituents and other likely phases. The maximum lines of the XRD pattern matches with the standard JCPDS file 20-0905 which is a direct evidence for the formation of the desired compound. These results indicate that the final product was formed in homogeneous form.

B. Photoluminescence (PL) in KMgCl₃:Ce³⁺

Figure 3 shows excitation spectra of KMgCl₃: Ce³⁺ phosphor shows broadband at 338nm and 264nm at emission wavelength of 375nm. Figure 4 shows PL emission spectra of Ce³⁺ ions under excitation of 264nm (Figure 4 (a) 2 mol% , (b) 5 mol% , (c) 10 mol% of Ce) and 338nm (Figure 4 (d) 2 mol% , (e) 5 mol% , (f) 10 mol% of Ce) wavelength of light showed double hump at 353nm and 375nm in ultraviolet to visible region of the spectra that depends on host lattice which is close to wavelength of UVA1 phototherapy lamps. These are assigned to the 5d-4f transition of Ce³⁺ ions. The double peaked spectrum is characteristic of split ground state (²F₇/₂ and ²F₅/₂) of Ce⁶⁺. PL intensity increases with increase in concentration of Ce³⁺ ions observed upto 10 mol% in this study.

C. PL in KMgCl₃: Eu³⁺

Figures 5 and 6 show the excitation and emission spectra of KMgCl₃: Eu³⁺ at λₓₑₐₐ=616nm and λₑₐₐ=394nm respectively. Excitation spectrum shows peak at 394nm and at this excitation wavelength emission is observed at the wavelength of 596nm and 616nm. The intensity of the spectra is observed very low. Eu³⁺ emission usually occurs from ⁵D₀-⁷Fᵢ transitions. Usually two transitions are observed ⁵D₀-⁷F₁ (around 596nm) and ⁵D₀-⁷F₂ (around 616nm). The first ⁵D₀-⁷F₁ transition is forbidden as electric dipole, but allowed as magnetic dipole [30].
This is the only transition when Eu$^{3+}$ occupies as it’s coinciding with a center of symmetry. When Eu$^{3+}$ ion is situated at a site, which lacks the inversion symmetry, then the transitions corresponding to even values of J (except 0) are electric dipole allowed and red emission is observed. The prominent peaks are observed at 596nm and weak emission is seen at 616nm due to $^5\text{D}_0-^7\text{F}_1$ magnetic dipole transitions of Eu$^{3+}$ ions and due to the hypersensitive $^5\text{D}_0-^7\text{F}_2$ electric dipole transition respectively when excited at 394nm. The luminescent properties of the phosphors occur from complex interactions among the host structure, defects, activators, and interfaces.

Figure 4: Emission spectra of KMgCl$_3$:Ce$^{3+}$ at λ_{ex}=264nm of Ce (a) 2, (b) 5, (c) 10 mol% and at λ_{ex}=338nm of Ce (d)2,(e)5, (f) 10mol%.

The emission spectra of KMgCl$_3$:Eu$^{3+}$ phosphor which showed emission at 596 nm and 616 nm with lesser intensity when excited at 394 nm. PL excitation and emission spectra of co-doped KMgCl$_3$:Ce,Eu is shown in Figures 6 and 7 for excitation of 264 nm. The excitation spectrum is monitored, recorded and plotted at 616 nm of emission wavelength. The emission spectra were recorded for the samples for different concentrations (2 mol% for Ce and 0.05, 0.1 and 0.5mol% for Eu). When this sample was excited by 268 nm, it shows emission with two broad spectra at 596 nm and 616 nm which is attributed to Eu$^{3+}$ transitions indicating transfer of energy from sensitizer Ce$^{3+}$ to activator Eu$^{3+}$. The prominent peaks are observed at 596nm and at 616nm due to $^5\text{D}_0-^7\text{F}_1$ magnetic dipole transitions of Eu$^{3+}$ ions and due to the hypersensitive $^5\text{D}_0-^7\text{F}_2$ electric dipole transition respectively when excited at 268nm. However, KMgCl$_3$:Eu$^{3+}$ sample when excited by wavelength of 394 nm results in an emission band of lower intensity while KMgCl$_3$:Ce,Eu sample excited by wavelength of 268nm results in an emission band of much higher intensity maintaining the emission wavelengths. The emission intensity has increased with the increase in Eu$^{3+}$ concentration and reached a maximum value for 0.5mol% of Eu whereas concentration of Ce was fixed.

Figure 5: Excitation spectra of KMgCl$_3$:Eu$^{3+}$0.1 mol% halo-phosphor monitored at $\lambda_{em}=616$nm.

Figure 6: PL emission spectra of KMgCl$_3$: Eu$^{3+}$ (a) 0.05, (b)0.1,(c)0.5mol%at $\lambda_{ex}=394$ nm.

D. PL in co-doped KMgCl$_3$:Ce$^{3+}$, Eu$^{3+}$

The emission spectra of KMgCl$_3$:Eu$^{3+}$ phosphor which showed emission at 596 nm and 616 nm with lesser intensity when excited at 394 nm. PL excitation and emission spectra of co-doped KMgCl$_3$:Ce,Eu is shown in Figures 6 and 7 for excitation of 264 nm. The excitation spectrum is monitored, recorded and plotted at 616 nm of emission wavelength. The emission spectra were recorded for the samples for different concentrations (2 mol% for Ce and 0.05, 0.1 and 0.5mol% for Eu). When this sample was excited by 268 nm, it shows emission with two broad spectra at 596 nm and 616 nm which is attributed to Eu$^{3+}$ transitions indicating transfer of energy from sensitizer Ce$^{3+}$ to activator Eu$^{3+}$. The prominent peaks are observed at 596nm and at 616nm due to $^5\text{D}_0-^7\text{F}_1$ magnetic dipole transitions of Eu$^{3+}$ ions and due to the hypersensitive $^5\text{D}_0-^7\text{F}_2$ electric dipole transition respectively when excited at 268nm. However, KMgCl$_3$:Eu$^{3+}$ sample when excited by wavelength of 394 nm results in an emission band of lower intensity while KMgCl$_3$:Ce,Eu sample excited by wavelength of 268nm results in an emission band of much higher intensity maintaining the emission wavelengths. The emission intensity has increased with the increase in Eu$^{3+}$ concentration and reached a maximum value for 0.5mol% of Eu whereas concentration of Ce was fixed.
at 2 mol%. This indicates that the KMgCl₃:Ce₃⁺,Eu³⁺ lattice is more suitable for higher concentrations of Eu³⁺ ions up to 0.5 mol%.

Figure 7: Excitation spectra of KMgCl₃:Ce³⁺2mole%,Eu³⁺0.5mole% at λem=616nm.

Figure 8: PL emission spectra of KMgCl₃:Ce³⁺2mole%,Eu³⁺0.5mole% at λex=268 nm

Photoluminescence emission peak position is shown in the table 1 which shows huge increase in the PL intensity when KMgCl₃ co-doped with Ce³⁺ and Eu³⁺ and table also illustrates intensity increases with increase in concentration of dopants.

<table>
<thead>
<tr>
<th>Phosphors</th>
<th>λ_ex (nm)</th>
<th>λ_em (nm)</th>
<th>Relative PL intensity (a.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KMgCl₃:Ce⁺₂mol%</td>
<td>264</td>
<td>353,37</td>
<td>9.11 and 24.25</td>
</tr>
<tr>
<td>KMgCl₃:Ce⁺₅mol%</td>
<td>338</td>
<td>353,37</td>
<td>12.14 and 39.44</td>
</tr>
<tr>
<td>KMgCl₃:Ce⁺₁₀mol%</td>
<td>353,37</td>
<td>353,37</td>
<td>14.16 and 44.52</td>
</tr>
<tr>
<td>KMgCl₃:Eu⁺₀.05mol%</td>
<td>394</td>
<td>596,61</td>
<td>11.06</td>
</tr>
<tr>
<td>KMgCl₃:Eu⁺₀.1mol%</td>
<td>596,61</td>
<td>596,61</td>
<td>34.11</td>
</tr>
<tr>
<td>KMgCl₃:Eu⁺₀.5mol%</td>
<td>596,61</td>
<td>596,61</td>
<td></td>
</tr>
<tr>
<td>KMgCl₃:Ce⁺₂mol%,Eu⁺₀.05m</td>
<td>268</td>
<td>596,61</td>
<td>181.112</td>
</tr>
<tr>
<td>KMgCl₃:Ce⁺₂mol%,Eu⁺₀.1mol</td>
<td>6</td>
<td>414,454</td>
<td></td>
</tr>
<tr>
<td>KMgCl₃:Ce⁺₂mol%,Eu⁺₀.5mol</td>
<td>6</td>
<td>559,604</td>
<td></td>
</tr>
</tbody>
</table>

The luminescence mechanism could be understood from the energy-level diagram, Figure 9. In KMgCl₃ co-doped with Ce³⁺ and Eu³⁺ the excitation into the Ce³⁺ band at 264 nm leads to the Eu³⁺. This means that in Ce³⁺ can be used as sensitizer which transfers its energy to the activator Eu³⁺. The first step of the path through which the activation energy is transferred from the sensitizer Ce³⁺ to the activator Eu³⁺ involves transfer between the 5d-4f, (Ce³⁺) energy is transferred to a Eu³⁺ activator ⁵D₀-⁷F₁ and ⁵D₀-⁷F₂ transition of Eu³⁺ ion. Moreover, an additional way of transfer energy is possible, namely, the radiation transitions in Ce³⁺ may excite directly the neighboring Eu atoms. Emission spectra of Eu³⁺ peaks, spectra in the red region significantly improve the colour rendering index. This powder may be potentially utilized in the manufacture of fluorescent lamps for advertising signs and other colour rendering devices. And excellent luminescent properties allowed
recommending these phosphors as good candidates for different applications.

![Figure 9: Ce$^{3+}$-Eu$^{3+}$ energy transfer mechanism in KMgCl$_3$ halo-sulphate phosphor](image)

IV. CONCLUSION

PL emission spectra of Ce$^{3+}$ ions under excitation of 338nm wavelength of light showed double hump at 353nm and 375nm which is in ultraviolet to visible region which may be useful in UVA1 phototherapy lamps. When KMgCl$_3$ is doped with Eu$^{3+}$ ions then very low PL intensity is observed but when the same host is co-doped significant increase in Eu$^{3+}$ emission is observed at the same wavelength. KMgCl$_3$: Ce$^{3+}$-Eu$^{3+}$ phosphors prepared by wet chemical method are good for Ce$^{3+}$-Eu$^{3+}$ energy transfer. KMgCl$_3$: Ce$^{3+}$, Eu$^{3+}$ shows strong emission at 596 nm and 616 nm which is in orange and red region due to 5D_0-7F_1 and 5D_0-7F_2 transitions of Eu$^{3+}$ ion.

V. REFERENCES

Cite this article as:
Journal URL: http://ijsrst.com/IJSRST21816