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ABSTRACT 
 

The leading questions of classical kinematics of material point have been examined: inversion of time, inversion of 

space, inversion of time and space, density of space and time, defined in the inertial frames of reference. The 

conditions are specified below, which must be met in order these concepts to apply in non-inertial frames of 

reference as well. 
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I. INTRODUCTION 

 

A. Inertial frame of reference 

 

1. Definition 

 

We shall give kinematic definition of concept of inertial 

frame of reference:  

 

One frame of reference is called inertial when: if the 

acceleration of the material point in this frame of 

reference is 0 ( 0a 


), the point moves uniformly or is 

at rest ( 0constv  ,


).  

 

Uniform motion of a material point is also called inertial 

motion.  

 

2. Motion in inertial frame of reference [1].  

 

Let consider inertial frame of reference K and other 

frame of reference K´ that is moving uniformly toward 

K. Let mark the velocity of the beginning of K´ toward 

K´ as const0v


 , the radius vector of an arbitrary 

material point M toward K to mark as r


 and toward K´ 

as r


. Radius vector of the beginning of K´ is 0r


.  

 

The connection between the coordinates of the point and 

time in both frames of reference is provided by Galileo's 

transformations: 

rrr 0



 

t = t′ 

Let mark the velocity of the material point in K with v


 

and in K´ with v


. The relationship between both 

velocities is obtained by differentiating the relation 

between the coordinates by the time: 

 

vvv 0



 

 

The resulting equation is called Galileo's theorem for 

addition of velocities. Very often v


 is called absolute 

velocity, v


 - relative velocity, and 0v


 - frame velocity. 

Let the material point moves with acceleration a


 in the 

frame of reference K, at the same time its acceleration in 

the frame of reference K´ is a


. The connection between 

both accelerations obtains as differentiates connection 

between the velocities multiplied by time: 

 

aa 


 
 

Or accelerations in both systems are equal.  

 

Conclusion: 

 

From here Galileo made the following key findings:  

 

1) All frames of reference, which are moving 

uniformly or are at rest toward a certain inertial 

frame of reference are also inertial.  

2) All inertial frames of reference are equal to each 

other, i. e. it cannot be chosen an absolute frame of 

reference in time and space.  
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3) Kinematics of material point is one and the same in 

all inertial frames of reference, in particular this 

applies to any conclusions concerning the 

characteristics of time, its inversion [2], the 

inversion of space [3], [4] and the density of space 

and time [5].  

 

B. Non - inertial frame of reference  

 

1. Definition 

 

Non - Inertial Frame of reference is this one, in which if 

the acceleration of the material point is 0 ( 0a 


), it is 

not moving uniformly or is not at rest ( 0constv  ,


).  

 

2. Motion in non - inertial frame of reference [1].  

Let consider inertial frame of reference K and other 

frame of reference K´, which moves in an arbitrary 

manner in relation toward K (Fig. 1).  

 

 

 
Figure 1:  Non - inertial frame of reference 

 

Let the radius-vector of an arbitrary material point M in 

K is r


, in K´ is r


 and radius-vector of the beginning of 

K´ toward K is 0r


. The arbitrary motion of K´ can be 

represented as the sum of translational and rotational 

movement toward momentary axis of rotation (see [1]).  

 

a) Transformation of coordinates and time.  

 

Galileo's transformations in classical mechanics are in 

force here as well:  

rrr 0



 

t = t′ 

 

b) Transformation of velocities.  

 

Let the velocity of the point M in K is v


, in K´ is v


, 

and the velocity of the beginning of K´ toward K is 0v


. 

Differentiating the connection between the coordinates 

by the time, we receive:  

 

vrvv 0



  

This connection between the velocities differs from the 

theorem of Galileo for addition of the velocities in 

inertial case by member: rvrot



  conditioned by 

rotation of K´ toward K.  

 

c) Transformation of accelerations.  

 

Let the acceleration of the material point in K is a


, its 

acceleration toward K´ is a


, and the acceleration of the 

beginning of K´ compared to K is 0a


. Differentiating 

relationship between velocities by the time, we receive:  

 

av2rraa0

  )(  

 

This equality is called as well theorem of Coriolis. Here: 

naaa


   - Absolute acceleration of the point toward 

K, 

 

0n00 aaa

   - Acceleration of the beginning of K´ 

toward K, 

 

  rotar

  - Tangential acceleration of rotation of 

K´ toward K, 

 

nrotar  )(

  - Normal (centripetal) acceleration 

of rotation of K´ toward K, 

 

e0 arra

 )(  - Reference-frame 

acceleration conditioned by movement of K´ toward K, 

cav2

  - Coriolis acceleration, conditioned by 

simultaneous movement of the point in K´ and by 

movement of K´ toward K, naaa 


  - Relative 

acceleration of the point toward K. 
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With these indications theorem of Coriolis is written 

briefly as follows:  

 

aaaa ce



 

d) Conclusions:  

 

1) Coriolis acceleration is always perpendicular to the 

velocity v


 and modifies only its direction but not its 

size. Normal parts of all accelerations in the right part of 

the theorem of Coriolis are always perpendicular to the 

respective velocities: vavava nrotrot00n



   ,      ,   n 

, 

and do not change their sizes (but may change the sizes 

of the other velocities). Tangential parts of the 

accelerations are always parallel to the respective 

velocities vavava rotrot00


    ,      ,     , and 

change these velocities only in size (but they can change 

the direction of the other velocities).  

 

2) Non-Inertial frames of reference  

 

K is an inertial frame of reference. If in it 

0constv0a ,    


. What kind of system is K´? 

From the theorem of Coriolis follows:   

0 cece aaaaaa


 and the point is not 

moving uniformly and is not at rest toward K´. The main 

conclusion that can be drawn is that all frames of 

reference, which are not moving uniformly or are not at 

rest toward particular frame of reference, are non-inertial. 

Or in non-inertial frames of reference alterations are 

necessary to be done in all kinematics values and laws 

deduced for inertial frames of reference.  

 

II. METHODS AND MATERIAL 
 

A. Inversion of time in non-inertial frames of 

reference.  

 

In [2] we gave a definition of reversing the course of 

time in classical kinematics of material point as an 

opportunity the point to go through the same spatial 

positions, but in reverse order, with the same size of 

velocity, but in opposite direction. Practically the 

inversion of time is carried - out by replacing in the laws 

the moments of time with their negative values: t ' = - t 

and the vector of velocity with: vv


 .  

The definition requires law of motion to be even 

function in case of inversion of time:  

 

)()( tt rr


  

 

and the law for velocity - to be odd function:  

 

)()( tt vv

  

 

From these two requirements follows the necessary 

condition the acceleration of the point to be even 

function in case of inversion of time:  

 

)()( tt aa


  

 

which, however, cannot always be carried out (see [2]).  

How the inversion of time looks like in Non-Inertial 

frame of reference K´?  

 

Let in inertial frame of reference K (Figure 1) the 

inversion of time to be possible and the laws of motion, 

velocity and acceleration to fulfill the above conditions.  

If we reverse the direction of time in the transformation 

of the velocities between K and K´ we have: 

  

)()()()(

)()()()(

tttt

tttt

vvvv

vvvv

rot0

rot0








 

 

It is seen that the law of velocity in K´ is odd function 

toward the inversion of time. (Here t' means inverted 

time). 

 

For the law of motion we have:  

 

constt

dttdttdttdtt

dttdttdtt

tdttdttdttdt

constt

















)(

)())(())(())((

))(())(())((

)()()()(

)(

r

vvvv

vvv

vvvv

r

rot0

rot0

rot0











 

 

Or the law of motion remains an even function at the 

inversion of time.  

As far as the law of acceleration we will use the theorem 

of Coriolis in the form:  
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)()()()()()()( n  ttttttt aaaaaaa crotrot0n0



  

At the inversion of time we have:  

)()( tt aa


  

    )()(
)(

)(v
)(

)(

)(v
)(

22

tt
t

t
t

t

t
t rotrot

0n0n anna






    

    )()(
)(

)(v
)(

)(

)(v
)( n 

22

n tt
tR

t
t

tR

t
t rotrot

rotrot anna






   

    
)()()(2

))(())((2)()()(

ttt

ttttt

i

c

av

vv2a











  

 

Which always are odd functions. 

 

We shall consider that tangential accelerations are not 

proportional to an arbitrary exponent of the relevant 

velocity (see [2]):  

 

vvrotrotrotvo00 evaevaeva 

 nnn

kkk  ,  ,    

Then they are also even functions. 

  

Finally, from the theorem of Coriolis follows:  

 

)(

)()()()()()(

)()()()()()(

)(

n  

n  

t

tttttt

tttttt

t

a

aaaaaa

aaaaaa

a

crotrot0n0

crotrot0n0




















 

 

Or the relative acceleration is an even function of time 

as well.  

 

From everything mentioned above follows that in non-

inertial frame of reference K´ inversion of time is 

possible analogous of inversion of time in K. 

Accordingly remain in force as well the classification of 

different types of movements in K´ regarding reverse the 

course of time: fully reversible and semi- reversible (see 

[2]).  

 

In the case where at least one of the three equations is in 

force:  

 

vvrotrotrotvo00 evaevaeva 

 nnn

kkk  ,  ,     

 

Corresponding accelerations are not even function of 

time, the movements are completely irreversible and 

inversion of time without external assistance is 

impossible ([2]).  

 

B. Inversion of space in non-inertial frames of 

reference.  

 

In [3] we gave a definition of inversion of space in 

classical kinematics of material point, based on the  

reversal of the direction of movement within it.  

 

Inversion of space means the material point to go 

through the same spatial positions in reverse order, with 

reverse direction of velocity, as it retains the character of 

the initial movement. This means as well that the initial 

position and velocity of the point becomes end ones, and 

vice versa.  

 

All this requires co-ordination in the laws of motion and 

velocity according their starting and end parameters.  

 

In the inertial frame of reference ([3]) movements 

inverted in space are those that are uniform ( 0a


 ) 

or in particular case, those about which:  

 

veva
 n

k  

All other movements for which 0a


 prove 

irreversible in space.  

 

What will we have in a non-inertial frame of reference 

K´? We shall use the theorem of Coriolis in the form:  

 

)()()()()()()(

)()(

n  ttttttt

tt

ncrotrot0n0

n

aaaaaaa

aa










  

In case of inversion of the movement Coriolis 

acceleration does not change:  

)()()()(2)( tt cc av2v2va

   

 

(Here ' means inversion of the movement). It is always 

perpendicular to the relative velocity and does not 

modify its size. The same is true for normal part of the 

relative acceleration )(tna


. This however is not true in 

general for other normal accelerations:  

 

   vavava nrotrot00n


 )(     ,     )(     ,     )( n ttt   



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) 

 

319 

which may not be perpendicular to v


 and can modify it 

both in size and in direction. Then if in K 0a


 , in 

order movement in K´ to be reversible in space, it is 

necessary in any given moment of time:  

 

)()()()()()( n  tttttt rotrot0n0n aaaaaa

   

 

i.e. the relative tangential acceleration must compensate 

the change of the magnitude of the relative velocity on 

the part of all these accelerations. Then the movement of 

the point in K´ will be uniform and inversion of the 

space is feasible there. From the theorem of Coriolis 

under this condition remains:  

 

)()( tt cn aa

  

 

Which corresponds only to the type of trajectory.  

 

For the coordination of the laws of velocity and 

movement we shall use (as in [3]) the trajectory of point 

for generalized coordinate S. Then in K´ we have for the 

law of velocity and movement:  

 

  consttt  )(v)(v 00SS    

  ttStS 0S00 v)()(     

 

The inversion of the space leads to:  

 

  consttt  )(v)(v 00SS    

  )(v)(v)(v 0S00SS tconsttt     

  ttStS 0S00 v)()(     

 

But: )()(00 tStS   , then:  

 

)(vv)(v)()( 000S0S000S tStttSttStS    

 

Or in K´ all uniform movements are convertible in space 

as well. 

 

As regards the specific case of reversible movements in 

K at: veva
 n

k , it does not exist in the non-inertial 

frame of reference due to the fact that the reference-

frame acceleration )(tea


 in the general case may not be 

always parallel to the relative velocity v


.  

 

In all other cases the movements in K´ are irreversible 

and inversion of space is impossible without external 

interference.  

 

C. Simultaneous inversion of time and space in non-

inertial frames of reference.  

 

All mentioned in B. and C. relates to simultaneous 

inversion of time and space in non-inertial frames of 

reference as well, which is possible only in case of 

uniform movements [4].  

 

D. Density of space and time in non-inertial frames of 

reference.  

 

In [5] we gave a definition of average and differential 

linear density of space and time, based on random 

motion of a material point. This definition is based on 

the mathematical definition of the density of function 

and argument [6], which is effective for monotonous, 

continuous and differentiable functions in a particular 

interval and equal quality of arrays of values of the 

function and argument. Using the trajectory of the 

material point in an inertial frame of reference K as a 

summary coordinate S, law of motion S (t) and 

equalizing quality between time and distance St = ct 

(where c = 1 - normalizing velocity), we have 

introduced relative linear differential and average 

density of the space toward the time through the 

formulas:  

 

  t
t

s
tdS

cdt

dS

dS 



  

)(v

c
ttt    

  tttts
t

c

S

tc  







)(v    

It is seen that the density of the space may be different 

from the density of the time.  

 

What will we have in the non-inertial frame of reference 

K´?  

 

First, according to Galileo's transformations, time flows 

equally in both systems K and K´: t' = t. We can 
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consider that the average and differential density of time 

is preserved in non-inertial frame of reference as well:  

 

  tt      

 

Accordingly, equalization of quality between time and 

distance preserves as well:  

 

  tcSt
    

 

where here c '= 1 m / s - normalizing velocity as well.  

 

Second, and here we shall examine the trajectory of the 

material point as a summarized coordinate S', providing 

the monotony of the law of motion toward the time:  

 

   dtdttattStS )()(v)( 000     

 

Law of velocity:  

   dttat )(v)(v 0     

 

as well as the formula for average velocity:  

  
 dtdtta
t

)(
1

vv 0     

 

According to the theorem of Coriolis:  

  )()()( tatata eSS     

 

(Here the projection of Coriolis acceleration by S is: 

0cSa  ). 

 

and according to the transformation of velocities:  

 

  )(v)(v)(v)(v rotS0SS tttt     

 

Then in K´ the same definitions of linear differential and 

average density of space toward the density of time 

remain as well and the following equations are effective:  

 

  t
t

s
tSd

dtc

Sd

Sd  
















 

)(v

c
ttt    

  tttts
t

c

S

tc  











)(v    

as the density of the space may be different from the 

density of time.  

 

 

III. RESULTS AND DISCUSSION 

From all these considerations the following conclusions 

can be made:  

The concepts: inversion of time, inversion of space, 

simultaneous inversion of time and space, density of 

time and space in classical kinematics can be 

summarized in the case of non-inertial frames of 

reference at relevant additional conditions:  

a)  Validity of Galileo's transformations concerning the 

coordinates and time at the transition from inertial to 

non-inertial frame of reference;   

b)  Preservation of evenness of the law of motion and 

the law of acceleration and oddness of the law of 

velocity regarding the inversion of time in non-inertial 

frame of reference;  

c)  Compensation of all accelerations changing the 

relative velocity in non-inertial frame of reference by the 

relative acceleration:  

  )()()()()()( n  tttttt rotrot0n0n aaaaaa

     

which ensures uniform movement of the point there.  
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