Recent Advancements in the Prediction of Air Quality Monitoring Using AI Techniques : A Comprehensive Review
DOI:
https://doi.org/10.32628/IJSRST2512195Keywords:
Air quality monitoring, machine learning, deep learning, IoT, cloud, literature surveyAbstract
Economic activities have degraded the quality of air, which is an important natural resource. Much effort has undergone to predict when air quality would be low, but the majority of these studies lack the longitudinal data needed to accurately adjust for seasonal and other confounding variables. This survey covers the subject of air quality monitoring in depth, looking at present methods to find different metrics and their effects on environmental health. To evaluate air quality in various places, the study used a variety of approaches that includes both fixed and mobile monitoring approaches. The factors contributing to deterioration of the air quality have been determined as particulate matter (PM2.5 and PM10), Sulfur Dioxide (SO2), Nitrogen Dioxide (NO2), Carbon Monoxide (CO), Ozone (O3), and Volatile Organic Compounds (VOCs).Several methods have been studied which are mainly focused on predicting and forecasting the air quality. The study revealed the importance of machine and deep learning based automated approaches to predict the air quality. Similarly, the technological advancements have facilitated promising solutions for AQI measurement by using IoT and cloud-based systems. The main goal of this paper is to examine current approaches and to determine the difficulties encountered by current approaches in AQI monitoring.
📊 Article Downloads
References
Ma, J., Cheng, J. C., Lin, C., Tan, Y., & Zhang, J. (2019). Improving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniques. Atmospheric Environment, 214, 116885. DOI: https://doi.org/10.1016/j.atmosenv.2019.116885
Zhou, Y., Chang, F. J., Chang, L. C., Kao, I. F., & Wang, Y. S. (2019). Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts. Journal of cleaner production, 209, 134-145. DOI: https://doi.org/10.1016/j.jclepro.2018.10.243
Du, S., Li, T., Yang, Y., & Horng, S. J. (2019). Deep air quality forecasting using hybrid deep learning framework. IEEE Transactions on Knowledge and Data Engineering, 33(6), 2412-2424. DOI: https://doi.org/10.1109/TKDE.2019.2954510
Chang, Y. S., Chiao, H. T., Abimannan, S., Huang, Y. P., Tsai, Y. T., & Lin, K. M. (2020). An LSTM-based aggregated model for air pollution forecasting. Atmospheric Pollution Research, 11(8), 1451-1463. DOI: https://doi.org/10.1016/j.apr.2020.05.015
Li, J., Shao, X., & Sun, R. (2019). A DBN-based deep neural network model with multitask learning for online air quality prediction. Journal of Control Science and Engineering, 2019. DOI: https://doi.org/10.1155/2019/5304535
Tao, Q., Liu, F., Li, Y., & Sidorov, D. (2019). Air pollution forecasting using a deep learning model based on 1D convnets and bidirectional GRU. IEEE access, 7, 76690-76698. DOI: https://doi.org/10.1109/ACCESS.2019.2921578
Qiao, W., Tian, W., Tian, Y., Yang, Q., Wang, Y., & Zhang, J. (2019). The forecasting of PM2. 5 using a hybrid model based on wavelet transform and an improved deep learning algorithm. IEEE Access, 7, 142814-142825. DOI: https://doi.org/10.1109/ACCESS.2019.2944755
Harish Kumar, K. S., & Gad, I. (2020). Time series analysis for prediction of PM2. 5 using seasonal autoregressive integrated moving average (SARIMA) model on Taiwan air quality monitoring network data. Journal of Computational and Theoretical Nanoscience, 17(9-10), 3964-3969. DOI: https://doi.org/10.1166/jctn.2020.8997
Marques, G., Ferreira, C. R., & Pitarma, R. (2019). Indoor air quality assessment using a CO 2 monitoring system based on internet of things. Journal of medical systems, 43, 1-10. DOI: https://doi.org/10.1007/s10916-019-1184-x
Abdul-Wahab, S. A., Charabi, Y., Osman, S., Yetilmezsoy, K., & Osman, I. I. (2019). Prediction of optimum sampling rates of air quality monitoring stations using hierarchical fuzzy logic control system. Atmospheric Pollution Research, 10(6), 1931-1943. DOI: https://doi.org/10.1016/j.apr.2019.08.006
De Capua, C., Fulco, G., Lugarà, M., & Ruffa, F. (2023). An Improvement Strategy for Indoor Air Quality Monitoring Systems. Sensors, 23(8), 3999. DOI: https://doi.org/10.3390/s23083999
Iskandaryan, D., Ramos, F., &Trilles, S. (2023). Graph Neural Network for Air Quality Prediction: A Case Study in Madrid. IEEE Access, 11, 2729-2742. DOI: https://doi.org/10.1109/ACCESS.2023.3234214
Liang, Y., Xia, Y., Ke, S., Wang, Y., Wen, Q., Zhang, J., ... & Zimmermann, R. (2023, June). Airformer: Predicting nationwide air quality in china with transformers. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 37, No. 12, pp. 14329-14337). DOI: https://doi.org/10.1609/aaai.v37i12.26676
Singh, T., Sharma, N., Satakshi, & Kumar, M. (2023). Analysis and forecasting of air quality index based on satellite data. Inhalation Toxicology, 35(1-2), 24-39. DOI: https://doi.org/10.1080/08958378.2022.2164388
Rakholia, R., Le, Q., Ho, B. Q., Vu, K., & Carbajo, R. S. (2023). Multi-output machine learning model for regional air pollution forecasting in Ho Chi Minh City, Vietnam. Environment International, 173, 107848. DOI: https://doi.org/10.1016/j.envint.2023.107848
Gokul, P. R., Mathew, A., Bhosale, A., & Nair, A. T. (2023). Spatio-temporal air quality analysis and PM2.5 prediction over Hyderabad City, India using artificial intelligence techniques. Ecological Informatics, 76, 102067. DOI: https://doi.org/10.1016/j.ecoinf.2023.102067
Wei, Y., Jang-Jaccard, J., Xu, W., Sabrina, F., Camtepe, S., &Boulic, M. (2023). LSTM-autoencoder-based anomaly detection for indoor air quality time-series data. IEEE Sensors Journal, 23(4), 3787-3800. DOI: https://doi.org/10.1109/JSEN.2022.3230361
Zhao, Z., Wu, J., Cai, F., Zhang, S., & Wang, Y. G. (2023). A hybrid deep learning framework for air quality prediction with spatial autocorrelation during the COVID-19 pandemic. Scientific Reports, 13(1), 1015. DOI: https://doi.org/10.1038/s41598-023-28287-8
Van, N. H., Van Thanh, P., Tran, D. N., & Tran, D. T. (2023). A new model of air quality prediction using lightweight machine learning. International Journal of Environmental Science and Technology, 20(3), 2983-2994. DOI: https://doi.org/10.1007/s13762-022-04185-w
Cheng, Y., Li, X., Li, Z., Jiang, S., Li, Y., Jia, J., & Jiang, X. (2014, November). AirCloud: A cloud-based air-quality monitoring system for everyone. In Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems (pp. 251-265). DOI: https://doi.org/10.1145/2668332.2668346
Kumar, S., & Jasuja, A. (2017, May). Air quality monitoring system based on IoT using Raspberry Pi. In 2017 International conference on computing, communication and automation (ICCCA) (pp. 1341-1346). IEEE. DOI: https://doi.org/10.1109/CCAA.2017.8230005
Arroyo, P., Herrero, J. L., Suárez, J. I., & Lozano, J. (2019). Wireless sensor network combined with cloud computing for air quality monitoring. Sensors, 19(3), 691. DOI: https://doi.org/10.3390/s19030691
Choudhary, V., Teh, J. H., Beltran, V., & Lim, H. B. (2020, January). AirQ: a smart iot platform for air quality monitoring. In 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC) (pp. 1-2). IEEE. DOI: https://doi.org/10.1109/CCNC46108.2020.9045550
Fioccola, G. B., Sommese, R., Tufano, I., Canonico, R., & Ventre, G. (2016, September). Polluino: An efficient cloud-based management of IoT devices for air quality monitoring. In 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI) (pp. 1-6). IEEE. DOI: https://doi.org/10.1109/RTSI.2016.7740617
Jabbar, W. A., Subramaniam, T., Ong, A. E., Shu'Ib, M. I., Wu, W., & de Oliveira, M. A. (2022). LoRaWAN-based IoT system implementation for long-range outdoor air quality monitoring. Internet of Things, 19, 100540. DOI: https://doi.org/10.1016/j.iot.2022.100540
Mad Saad, S., Andrew, A. M., MdShakaff, A. Y., Mat Dzahir, M. A., Hussein, M., Mohamad, M., & Ahmad, Z. A. (2017). Pollutant recognition based on supervised machine learning for indoor air quality monitoring systems. Applied Sciences, 7(8), 823. DOI: https://doi.org/10.3390/app7080823
Raghuveera, E., Kanakaraja, P., Kishore, K. H., Sriya, C. T., & Lalith, B. S. K. T. (2021, April). An IoT enabled air quality monitoring system using LoRa and LPWAN. In 2021 5th International conference on computing methodologies and communication (ICCMC) (pp. 453-459). IEEE. DOI: https://doi.org/10.1109/ICCMC51019.2021.9418440
Li, X., Peng, L., Hu, Y., Shao, J., & Chi, T. (2016). Deep learning architecture for air quality predictions. Environmental Science and Pollution Research, 23, 22408-22417. DOI: https://doi.org/10.1007/s11356-016-7812-9
Rahi, P., Sood, S. P., Bajaj, R., & Kumar, Y. (2021). Air quality monitoring for Smart eHealth system using firefly optimization and support vector machine. International Journal of Information Technology, 13(5), 1847-1859. DOI: https://doi.org/10.1007/s41870-021-00778-9
Saxena, A., & Shekhawat, S. (2017). Ambient air quality classification by grey wolf optimizer based support vector machine. Journal of environmental and public health, 2017. DOI: https://doi.org/10.1155/2017/3131083
Ghaemi, Z., Alimohammadi, A., & Farnaghi, M. (2018). LaSVM-based big data learning system for dynamic prediction of air pollution in Tehran. Environmental monitoring and assessment, 190, 1-17. DOI: https://doi.org/10.1007/s10661-018-6659-6
Liu, W., Guo, G., Chen, F., & Chen, Y. (2019). Meteorological pattern analysis assisted daily PM2. 5 grades prediction using SVM optimized by PSO algorithm. Atmospheric Pollution Research, 10(5), 1482-1491. DOI: https://doi.org/10.1016/j.apr.2019.04.005
Shaban, K. B., Kadri, A., & Rezk, E. (2016). Urban air pollution monitoring system with forecasting models. IEEE Sensors Journal, 16(8), 2598-2606. DOI: https://doi.org/10.1109/JSEN.2016.2514378
Borghi, F., Spinazzè, A., Rovelli, S., Campagnolo, D., Del Buono, L., Cattaneo, A., & Cavallo, D. M. (2017). Miniaturized monitors for assessment of exposure to air pollutants: A review. International journal of environmental research and public health, 14(8), 909. DOI: https://doi.org/10.3390/ijerph14080909
Johnston, S. J., Basford, P. J., Bulot, F. M., Apetroaie-Cristea, M., Easton, N. H., Davenport, C., ... & Cox, S. J. (2019). City scale particulate matter monitoring using LoRaWAN based air quality IoT devices. Sensors, 19(1), 209. DOI: https://doi.org/10.3390/s19010209
Sulistiawanti, N., Ahsan, M., & Khusna, H. (2023). Multivariate Exponentially Weighted Moving Average (MEWMA) and Multivariate Exponentially Weighted Moving Variance (MEWMV) Chart Based on Residual XGBoost Regression for Monitoring Water Quality. Engineering Letters, 31(3).
Yan, H., Ma, L., Yuan, X., Wang, J., & Zhou, Q. (2023). An Improved Markov Chain Model and Its Application. Engineering Letters, 31(1).
Jiang, N., Zheng, X., Zheng, H., & Zheng, Q. (2021). Long short-term memory based PM2. 5 concentration prediction method. Engineering Letters, 29(2), 765-774.
Konglok, S. A., & Pochai, N. (2016). Numerical Computations of Three-dimensional Air-Quality Model with Variations on Atmospheric Stability Classes and Wind Velocities using Fractional Step Method. IAENG International Journal of Applied Mathematics, 46(1).
Natarajan, S. K., Shanmurthy, P., Arockiam, D., Balusamy, B., & Selvarajan, S. (2024). Optimized machine learning model for air quality index prediction in major cities in India. Scientific Reports, 14(1), 6795. DOI: https://doi.org/10.1038/s41598-024-54807-1
Liu, B., Qi, Z., & Gao, L. (2024). Enhanced Air Quality Prediction through Spatio-temporal Feature Sxtraction and Fusion: A Self-tuning Hybrid Approach with GCN and GRU. Water, Air, & Soil Pollution, 235(8), 532. DOI: https://doi.org/10.1007/s11270-024-07346-4
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0