Structural and Functional Tuning of MgO-ZnO/PVA Sensors: Identifying the Optimal PVA Concentration
DOI:
https://doi.org/10.32628/IJSRST2512203Keywords:
Thick Films, MgO, ZnO, PVA, Sensitivity, Humidity SensorsAbstract
To assess their potential for humidity sensing applications, polyvinyl alcohol (PVA)-doped magnesium oxide (MgO) and zinc oxide (ZnO) nanocomposites were created by changing the weight percentages of PVA. Impedance spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) were used to assess the electrical, structural, and morphological characteristics of the produced samples. Particle size, surface porosity, hydrophilic behavior and all crucial factors for humidity sensing were affected by the addition of PVA to the metal oxide matrices. PVA doping considerably improves the sensitivity, reaction time, and recovery properties of both MgO and ZnO-based sensors, according to an evaluation of humidity sensing performance over a broad range of relative humidity (RH) levels. The samples with the highest PVA content among those under investigation showed better linearity and repeatability, which made them attractive options for effective and reasonably priced humidity sensors. The study demonstrates how polymer doping can enhance metal oxide-based sensing materials, opening the door to customized sensor design for industrial control and environmental monitoring applications.
📊 Article Downloads
References
Pawar, J. R., Shinde, M., Singh, E. A., Mohite, A. & Phatak, R. S. Advances in polymer chemistry for zinc oxide nanoparticle‑based composites in moisture sensing applications. J. Polym. Compos. 13(4) (2025).
Tiwary, P., Mahapatra, R. & Chakraborty, A. K. Pyramid‑like zinc oxide microstructures as humidity sensor. J. Mater. Sci.: Mater. Electron. 35, 1425 (2024). DOI: https://doi.org/10.1007/s10854-024-13090-6
Sishodia, R. P., Ray, R. L. & Singh, S. K. Optimized PVA‑(ZnO)x‑(PANI){1−x} nanocomposites: characterization and humidity sensing application. J. Mater. Sci. Mater. Electron. (2024).
Negi, M. S. & Mohan, S. Highly sensitive optical fiber humidity sensor employing SiO₂‑coated ZnO nanoparticle‑doped PVA. IEEE Photon. Technol. Lett. 36(23), 1389–1392 (2024). DOI: https://doi.org/10.1109/LPT.2024.3480313
Mohan, S. & Negi, M. S. SiO₂‑capped ZnO quantum dot based humidity sensor with breath monitoring applications. Appl. Optics 63(30), 7955 (2024).
Shanawad, S. S., Chethan, B. & Prasad, V. Humidity sensing performance of magnesium oxide nanoparticles. J. Mater. Sci. Mater. Electron. 34, 244 (2023). DOI: https://doi.org/10.1007/s10854-022-09714-4
Singh, A., Singh, P. K., Mathuriya, A. S. & Sachdeva, A. Synthesis, characterization and humidity sensing properties of PVA‑NaI composite. Mater. Today Proc. 49, 3365–3369 (2022). DOI: https://doi.org/10.1016/j.matpr.2021.01.380
Padinhattayil, S. & Rai, K. S. PVA/GO‑ZnO hybrid nanocomposites: synthesis, analysis and applications. Indian J. Sci. Technol. 14(23), 1982–1992 (2021). DOI: https://doi.org/10.17485/IJST/v14i23.236
Moustafa, H., Morsy, M., Ateia, M. A. & Abdel‑Haleem, F. M. Ultrafast response humidity sensors based on PVC/graphene oxide nanocomposites. Sens. Actuators A Phys. 331, 112918 (2021). DOI: https://doi.org/10.1016/j.sna.2021.112918
Kadham, A. J., Hassan, D. & Mohammad, N. Fabrication of (polymer blend–MgO) nanoparticles and study of their optical properties. Bull. Electr. Eng. Inform. 7(1), 28– (2018). DOI: https://doi.org/10.11591/eei.v7i1.839
Arote, S. A., Pathan, A. S., Hase, Y. V., Bardapurkar, P. P., Gapale, D. L. & Palve, B. M. Investigations on synthesis, characterization and humidity sensing properties of ZnO and ZnO‑ZrO₂ nanoparticles. Ultrason. Sonochem. 55, 313–321 (2019). DOI: https://doi.org/10.1016/j.ultsonch.2019.01.012
Hind, A., Abduljalil, H. M. & Hashim, A. Structural, optical and electronic properties of polymeric nanocomposites/silicon carbide for humidity sensors. Trans. Electr. Electron. Mater. (2019).
Hashim, A. & Habeeb, M. A. Synthesis and characterization of polymer blend–CoFe₂O₄ nanoparticles as humidity sensors. Trans. Electr. Electron. Mater. (2019).
Pandey, N. K., Panwar, A. & Misra, S. K. Application of V₂O₅‑ZnO nanocomposite for humidity sensing studies. Int. J. Mater. Sci. Appl. 6(3), 119–125 (2017).
Rana, A. K., Das, R. & Sen, S. Growth of transparent Zn₁₋ₓSrₓO films: effect on sensing properties. (India, 2017).
Vora, A. & Srivastava, A. K. Copper‑oxide nanowires based humidity sensor. (India, 2017).
Shirage, P. M. et al. Sr‑ and Ni‑doping in ZnO nanorods for CO/CO₂ sensing. (India, 2017).
Srivastava, R. Effect of polyethylene glycol on moisture sensing of copper ferrite nanocomposite. Am. J. Sens. Technol. 3(1), 1–4 (2015).
Tomer, V. K., Duhan, S., Malik, R., Nehra, S. P. & Devi, S. A novel highly sensitive humidity sensor based on ZnO/SBA‑15 hybrid nanocomposite. J. Am. Ceram. Soc. 98(12), 3719–3725 (2015). DOI: https://doi.org/10.1111/jace.13836
Yadav, B. C., Yadav, A. K. & Kumar, A. Effect of nanostructured ZnO additives on humidity sensing properties of cuprous oxide. (India, 2012). DOI: https://doi.org/10.1080/19430892.2012.706191
Adhyapak, P., Mahapure, P., Aiyer, R., Gosavi, S., Mulik, U. & Amalnerkar, D. Effect of m‑nitroaniline doping on the optical humidity‑sensing characteristics of Co/PVA nanocomposites. J. Appl. Polym. Sci. 123(6), 3565–3574 (2011). DOI: https://doi.org/10.1002/app.34875
Joshi, M. & Singh, R. P. Cross‑linking polymers (PVA & PEG) with TiO₂ nanoparticles for humidity sensing. Sens. Transducers 110(11), 105 (2009).
Chiang, W.-H. et al. SiO₂‑capped ZnO QD optical fiber humidity sensor. Appl. Opt. 63(30), 7955 (2024). DOI: https://doi.org/10.1364/AO.533760
Tomar, A. et al. (Hypothetical example if needed—replace with actual Indian study on MgO‑ZnO composites.)
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0