A Short Review of Lithium Ferrite Synthesis Techniques and Their Applications
DOI:
https://doi.org/10.32628/IJSRST251222698Keywords:
Lithium ferrite, synthesis techniques, different properties, technological applicationsAbstract
Lithium ferrite (LiFe5O8, LiFe2.5O4) has emerged as a vital material in a variety of technological applications due to its unique magnetic, electrical, and chemical properties. This review presents a comprehensive examination of the synthesis techniques developed for lithium ferrite, ranging from conventional solid-state reactions to advanced methods such as sol–gel processing, hydrothermal synthesis, co-precipitation, and microwave-assisted techniques. Each method's advantages, limitations, and influence on the resulting ferrite's structural, morphological, and magnetic properties are critically discussed. Particular attention is given to how synthesis parameters such as temperature, precursor choice, and reaction atmosphere affect material performance. Additionally, this review explores the diverse applications of lithium ferrite across fields including microwave devices, magnetic storage media, sensors, catalysis, and biomedical engineering. Current challenges and future opportunities for optimizing lithium ferrite for next-generation applications are also outlined, providing a valuable framework for researchers aiming to tailor this material for specific functional uses.
Downloads
References
M. Srivastava, A. K. Ojha, S. Chaubey, P. K. Sharma, and A. C. Pandey, Materials Science and Engineering: B 175, 14 (2010).
N. Askarzadeh and H. Shokrollahi, Results Chem 10, (2024).
C. Gao, C. Cao, and J. Zhao, Appl Phys A Mater Sci Process 125, (2019).
P. P. Hankare, R. P. Patil, U. B. Sankpal, S. D. Jadhav, P. D. Lokhande, K. M. Jadhav, and R. Sasikala, J Solid State Chem 182, 3217 (2009).
P. Hernández-Gómez, M. A. Valente, M. P. F. Graça, and J. M. Muñoz, J Alloys Compd 765, 186 (2018).
M. Junaid, I. A. Qazafi, M. A. Khan, S. Gulbadan, S. Z. Ilyas, H. H. Somaily, M. S. Attia, M. A. Amin, and H. M. Noor ul Huda Khan Asghar, Ceram Int 48, 14307 (2022).
L. Kaykan, A. K. Sijo, A. Żywczak, J. Mazurenko, and K. Bandura, Applied Nanoscience (Switzerland) 10, 4577 (2020).
A. Yazdanpanah, F. Moztarzadeh, and S. Arabyazdi, Physica B Condens Matter 593, (2020).
S. S. Teixeira, F. Amaral, M. P. F. Graça, and L. C. Costa, Materials Science and Engineering: B 255, (2020).
R. Baladi and K. Gheisari, Transactions of the Indian Ceramic Society 78, 195 (2019).
N. Borhan, K. Gheisari, and M. Z. Shoushtari, J Supercond Nov Magn 29, 145 (2016).
S. Anjum, M. Nisa, A. Sabah, M. S. Rafique, and R. Zia, Appl Phys A Mater Sci Process 123, (2017).
S. A. Lamonova, E. N. Lysenko, and A. V. Malyshev, in IOP Conf Ser Mater Sci Eng (Institute of Physics Publishing, 2015).
P. P. Mohapatra, S. Pittal, and P. Dobbidi, Journal of Materials Research and Technology 9, 2992 (2020).
M. Srivastava, R. K. Mishra, J. Singh, N. Srivastava, N. H. Kim, and J. H. Lee, J Alloys Compd 645, 171 (2015).
R. P. Patil, A. D. Pinjarkar, D. J. Sathe, A. S. Chavan, S. D. Delekar, and P. P. Hankare, Journal of Materials Science: Materials in Electronics 27, 1574 (2016).
V. Mohanty and G. Govindaraj, Mater Res Express 5, (2018).
M. Tabuchi, K. Ado, H. Sakaebe, C. Masquelier, H. Kageyama, and O. Nakamura, Preparation of AFeO, (A = Li, Na) by Hydrothermal Method (n.d.).
X. Wang, L. Gao, L. Li, H. Zheng, Z. Zhang, W. Yu, and Y. Qian, Nanotechnology 16, 2677 (2005).
Fatima-tuz-Zahra, H. Ghazanfar, M. A. A. Khan, and M. Anis-ur-Rehman, J Supercond Nov Magn 30, 813 (2017).
A. V. Malyshev, E. N. Lysenko, and V. A. Vlasov, Ceram Int 41, 13671 (2015).
Y. P. Fu, C. H. Lin, C. W. Liu, and Y. Der Yao, J Alloys Compd 395, 247 (2005).
P. D. Baba, G. M. Argentina, W. E. Courtney, G. F. Dionne, and D. H. Temie, Fabrication and Properties of Microwave Lithium Ferrites (n.d.).
S. D. Patil, Sagar. M. Mane, P. M. Kharade, J. V. Thombare, R. S. Gaikwad, M. P. Tirpude, J. C. Shin, S. S. Dhasade, and H. J. Kim, ECS Journal of Solid State Science and Technology 11, 054010 (2022).
G. Aravind, M. Raghasudha, D. Ravinder, A. Gaffoor, and V. Nathanial, J Nanostructure Chem 5, 77 (2015).
V. S. Sawant, A. A. Bagade, S. V. Mohite, and K. Y. Rajpure, Physica B Condens Matter 451, 39 (2014).
C. Sun and K. Sun, Solid State Commun 141, 258 (2007).
H. W. Zhang, J. Li, H. Su, T. C. Zhou, Y. Long, and Z. L. Zheng, Chinese Physics B 22, (2013).
N. Rezlescu, C. Doroftei, E. Rezlescu, and P. D. Popa, Sens Actuators B Chem 133, 420 (2008).
M. Dasari, G. R. Gajula, D. H. Rao, A. K. Chintabathini, S. Kurimella, and B. Somayajula, Processing and Application of Ceramics 11, 7 (2017).
N. AlMasoud, A. Irshad, U. Rafiq, T. S. Alomar, A. A. Al-wallan, M. F. Warsi, and Z. M. El-Bahy, Ceram Int (2024).
H. A. Lara-García, E. Vera, J. A. Mendoza-Nieto, J. Francisco Gómez-García, Y. Duan, and H. Pfeiffer, Bifunctional Application of Lithium Ferrites (Li5FeO4 and LiFeO2) During Carbon Monoxide (CO) Oxidation and Chemisorption Processes. A Catalytic, Thermogravimetric and Theoretical Analysis (n.d.).
T. N. Pham, T. Q. Huy, and A. T. Le, RSC Adv 10, 31622 (2020).
K. Manjunatha, J. Angadi V., S. S. Hardi, H. H. Chiu, T. E. Hsu, S. Y. Wu, M. C. Oliveira, E. Longo, R. A. P. Ribeiro, M. Ubaidullah, A. A. Al-Kahtani, K. Sharma, M. Gupta, N. Basavegowda, S. wang, T. Sathish, S. O. Manjunatha, and S. P. Kubrin, Ceram Int 50, 21242 (2024).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.