Developing Climate-Adaptive Digital Twin Architectures for Predictive Supply Chain Disruption Management Using Spatio-Temporal Analytics and Edge Computing
DOI:
https://doi.org/10.32628/IJSRST25123101Keywords:
Digital Twin Architecture, Spatio-Temporal Analytics, Climate Adaptation, Edge Computing, Predictive Supply Chain Management, Disruption ResilienceAbstract
In an era defined by climate volatility and increasingly complex global supply networks, the need for predictive and adaptive supply chain systems has become paramount. This paper presents a comprehensive framework for developing climate-adaptive digital twin architectures, leveraging spatio-temporal analytics and edge computing to enable real-time disruption management. By integrating geospatial climate data with real-time operational metrics, digital twins offer a dynamic virtual representation of physical supply chain assets, enabling scenario forecasting and resilience planning. The incorporation of edge computing enhances the timeliness and localization of decisions, especially in latency-sensitive environments. Through the convergence of these technologies, supply chains can proactively respond to climate-induced events such as floods, droughts, or extreme weather disruptions. The proposed architecture is designed to support modular deployment, interoperability with legacy systems, and scalable analytics, making it suitable for both regional and global logistics networks. The study also reviews use cases across food logistics, maritime transport, and warehouse operations, highlighting measurable improvements in risk anticipation and operational continuity. This work contributes to the evolving discourse on sustainable supply chain innovation, offering actionable insights for policymakers, engineers, and operations managers seeking to align digital transformation with climate resilience.
Downloads
References
Accruent. (2020). Preventative, predictive, and prescriptive maintenance: Why all three are essential for food and beverage manufacturers. Food Logistics. https://www.foodlogistics.com/safety-security/food-safety/article/22929554/accruent-preventative-predictive-and-prescriptive-maintenance-why-all-three-are-essential-for-food-and-beverage-manufacturers
Akpe, O. E. E., Mgbame, A. C., Ogbuefi, E., Abayomi, A. A., &Adeyelu, O. O. (2020). Bridging the business intelligence gap in small enterprises: A conceptual framework for scalable adoption. IRE Journals, 4(2), 159–161. https://irejournals.com/paper-details/1708222
Alaa, A. M., & van der Schaar, M. (2020). A hidden absorbing semi-Markov model for informatively censored temporal data: Learning and inference. Advances in Neural Information Processing Systems, 33, 7678–7689. https://papers.nips.cc/paper_files/paper/2020/file/0ed063ae49a6e38e72dcebb9a02c7aef-Paper.pdf
Banerjee, S., Carlin, B. P., &Gelfand, A. E. (2004). Hierarchical modeling and analysis for spatial data. Chapman and Hall/CRC.
Ben-Daya, M., Hassini, E., &Bahroun, Z. (2019). Internet of things and supply chain management: A literature review. International Journal of Production Research, 57(15-16), 4719–4742. https://doi.org/10.1080/00207543.2017.1402140
Brown, N., Nash, R., Gibb, G., Prodan, B., Kontak, M., Olshevsky, V., &Chien, W. D. (2020). The role of interactive super-computing in using HPC for urgent decision making. arXiv preprint arXiv:2010.08774.
Cao, S., Fan, P., Yan, T., Xie, C., Deng, J., Xu, F., &Shu, Y. (2022). Inland waterway ship path planning based on improved RRT algorithm. Journal of Marine Science and Engineering, 10(10), 1460. https://doi.org/10.3390/jmse10101460
Chiang, M., & Zhang, T. (2016). Fog and IoT: An overview of research opportunities. IEEE Internet of Things Journal, 3(6), 854–864. https://doi.org/10.1109/JIOT.2016.2584538
Chiang, M., & Zhang, T. (2016). Fog and IoT: An overview of research opportunities. IEEE Internet of Things Journal, 3(6), 854–864. https://doi.org/10.1109/JIOT.2016.2584538
Climate Neutral Data Centre Pact. (2021). Self-regulatory initiative to make data centres in Europe climate neutral by 2030. Retrieved from https://www.climateneutraldatacentre.net/
Cressie, N., &Johannesson, G. (2008). Fixed rank kriging for very large spatial data sets. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(1), 209–226. https://doi.org/10.1111/j.1467-9868.2007.00633.x
Cressie, N., &Wikle, C. K. (2011). Statistics for Spatio-Temporal Data. Wiley.
ElSaadani, M., Habib, E., Abdelhameed, A. M., &Bayoumi, M. (2021). Assessment of a Spatiotemporal Deep Learning Approach for Soil Moisture Prediction and Filling the Gaps in Between Soil Moisture Observations. Frontiers in Artificial Intelligence, 4, 636234. https://doi.org/10.3389/frai.2021.636234(Frontiers)
Fang, D., Zhao, C., Wen, L., Tang, J., & Wen, F. (2020). Optimal logistics planning with AI-based predictive disruption control in food supply chains. Sustainability, 12(4), 1482. https://doi.org/10.3390/su12041482
Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression: The analysis of spatially varying relationships. Wiley.
Ghahramani, Z., Heller, K. A., &Salakhutdinov, R. (2020). Bayesian approaches to spatio-temporal modeling in climate prediction. Journal of Climate Modeling and Forecasting, 12(3), 101–120.
Giri, B. C., &Sarker, B. R. (2017). Improving warehouse performance: A review. European Journal of Operational Research, 264(3), 803–817. https://doi.org/10.1016/j.ejor.2017.06.003
Hefley, T. J., Hooten, M. B., Hanks, E. M., Russell, R. E., & Walsh, D. P. (2017). Dynamic species distribution models: Predicting spatiotemporal changes in species occurrence. Ecology, 98(3), 847–855. https://doi.org/10.1002/ecy.1710
Ivanov, D. (2020). Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case. Transportation Research Part E: Logistics and Transportation Review, 136, 101922. https://doi.org/10.1016/j.tre.2020.101922
Jiang, Z., Yin, J., Cheng, Y., & Wang, X. (2020). Spatio-temporal prediction: A survey on deep learning methods. Journal of Big Data, 7(1), 1–36. https://doi.org/10.1186/s40537-020-00380-9
Jiang, Z., Yin, J., Zhao, S., & Fan, Y. (2020). A Survey on Spatial and Spatiotemporal Prediction Methods. arXiv preprint arXiv:2012.13384. https://arxiv.org/abs/2012.13384
Klein, R. J. T., Midgley, G. F., Preston, B. L., Alam, M., Berkhout, F. G., Dow, K., & Shaw, M. R. (2020). Adaptation opportunities, constraints, and limits. Climate Change 2020: Impacts, Adaptation, and Vulnerability. Cambridge University Press.
Kritzinger, W., Karner, M., Traar, G., Henjes, J., &Sihn, W. (2018). Digital twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine, 51(11), 1016–1022. https://doi.org/10.1016/j.ifacol.2018.08.474
Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2020). Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. International Journal of Geographical Information Science, 34(3), 438–456. https://doi.org/10.1080/13658816.2019.1653612
Li, Z., Yan, H., Zhang, C., &Tsung, F. (2020). Long-Short Term Spatiotemporal Tensor Prediction for Passenger Flow Profile. arXiv preprint arXiv:2004.11022. https://arxiv.org/abs/2004.11022(arXiv)
Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2020). A survey on Internet of Things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet of Things Journal, 7(6), 5411–5428. https://doi.org/10.1109/JIOT.2020.2963820
McClure, R. (2025). Data interoperability for supply chains: The best ways to unlock your digital assets and empower innovation. Supply Chain Tech Insights. Retrieved from https://sctechinsights.com/data-interoperability-for-supply-chains-the-best-ways-to-unlock-your-digital-assets-and-empower-innovation/
McGovern, A., Gagne II, D. J., Williams, J. K., Brown, R. A., &Basara, J. B. (2013). Enhancing understanding and improving prediction of severe weather through spatiotemporal relational learning. Machine Learning, 95(1), 27–50. https://doi.org/10.1007/s10994-013-5343-x(SpringerLink)
Radford, A., Huang, T., &Kanter, J. M. (2020). Climate-aware data centers: Resilience strategies for extreme weather and temperature spikes. Journal of Environmental Informatics, 35(3), 147–159.
Sada, J. (2025). Data integration and interoperability in supply chain systems. LinkedIn. Retrieved from https://www.linkedin.com/pulse/data-integration-interoperability-supply-chain-systems-javier-sada-y67mc
Sadowski, J., &Levenda, A. M. (2020). The anti-politics of smart infrastructure and the idea of 'climate-proofing'. Urban Studies, 57(4), 679–695. https://doi.org/10.1177/0042098019862150
Satyanarayanan, M. (2017). The emergence of edge computing. Computer, 50(1), 30–39. https://doi.org/10.1109/MC.2017.9
Satyanarayanan, M. (2017). The emergence of edge computing. Computer, 50(1), 30–39. https://doi.org/10.1109/MC.2017.9
Shi, W., &Dustdar, S. (2016). The Promise of Edge Computing. Computer, 49(5), 78–81. https://doi.org/10.1109/MC.2016.145
Shi, W., Cao, J., Zhang, Q., Li, Y., &Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5), 637–646. https://doi.org/10.1109/JIOT.2016.2579198
Shi, W., Cao, J., Zhang, Q., Li, Y., &Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5), 637–646. https://doi.org/10.1109/JIOT.2016.2579198
Shi, X., Chen, Z., Wang, H., Yeung, D. Y., Wong, W., & Woo, W. C. (2015). Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Advances in Neural Information Processing Systems, 28, 802–810.
Tao, F., Zhang, M., Liu, Y., & Nee, A. Y. C. (2019). Digital twin in industry: State-of-the-art. IEEE Transactions on Industrial Informatics, 15(4), 2405–2415. https://doi.org/10.1109/TII.2018.2873186
Tsolakis, N., Keramydas, C. A., Toka, A., Aidonis, D., &Iakovou, E. (2020). Agrifood supply chain management: A comprehensive hierarchical decision-making framework and a critical taxonomy. Operational Research, 20, 311–335. https://doi.org/10.1007/s12351-017-0345-2
van Gevelt, T., McAdoo, B. G., Yang, J., Li, L., Williamson, F., Scollay, A., Lam, A., Chan, K. N., & Switzer, A. D. (2023). Using virtual simulations of future extreme weather events to communicate climate change risk. PLOS Climate, 2(2), e0000112. https://doi.org/10.1371/journal.pclm.0000112
Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., ...& Fuso Nerini, F. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nature Communications, 11(1), 233.
Wang, X., Zhang, Y., &Arthanari, T. (2018). Impact of severe natural disasters on global supply chain performance. International Journal of Production Economics, 202, 51–59. https://doi.org/10.1016/j.ijpe.2018.04.020
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2020). A Comprehensive Survey on Graph Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1), 4–24.
Yu, B., Yin, H., & Zhu, Z. (2018). Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. Proceedings of the 27th International Joint Conference on Artificial Intelligence. https://doi.org/10.24963/ijcai.2018/505
Yuan, X., Wang, J., Zhao, G., & Wang, H. (2024). Comprehensive study on optimizing inland waterway vessel routes using AIS data. Journal of Marine Science and Engineering, 12(10), 1775. https://doi.org/10.3390/jmse12101775
Zhang, C., Jiang, Y., Wang, X., &Xu, C. (2020). Edge computing in smart logistics: System architecture, enabling technologies, and application scenarios. IEEE Access, 8, 147751–147764. https://doi.org/10.1109/ACCESS.2020.3016467
Zhang, Q., Wang, Z., Ma, S., &Arif, A. (2020). Stochastic Pre-Event Preparation for Enhancing Resilience of Distribution Systems with High DER Penetration. arXiv preprint arXiv:2012.13043.
Zhang, X., Zhao, X., & Zhao, Y. (2020). Real-time monitoring and predictive analytics in smart warehouses: A case study in China. Computers & Industrial Engineering, 139, 105713. https://doi.org/10.1016/j.cie.2019.105713
Zhao, G., Lin, Y., Li, Y., & Wang, J. (2025). Enabling autonomous navigation: Adaptive multi-source risk assessment for maritime navigation. Reliability Engineering & System Safety, 245, 109118. https://doi.org/10.1016/j.ress.2024.109118
Zheng, Y., Liu, F., & Hsieh, H. P. (2020). U-Air: When urban air quality inference meets big data. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1436–1444
Zhou, D., Wen, F., Xu, G., & Du, Y. (2020). Adaptive neural network-based control strategies for climate-resilient energy systems. IEEE Transactions on Smart Grid, 11(2), 1120–1130
Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., & Zhang, J. (2019). Edge intelligence: Paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107(8), 1738–1762. https://doi.org/10.1109/JPROC.2019.2918951
Zhu, Q., Qin, X., Zhou, D., Yang, T., & Song, X. (2024). Impacts of spatiotemporal resolutions of precipitation on flood event simulation based on multimodel structures – a case study over the Xiang River basin in China. Hydrology and Earth System Sciences, 28, 1665–1686. https://doi.org/10.5194/hess-28-1665-2024
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.