Mental Health Analysis with Artificial Intelligence
DOI:
https://doi.org/10.32628/IJSRST25123109Abstract
This dissertation explores the role of AI technologies in modern mental healthcare and reviews recent developments achieved by researchers, with a special focus on the growing field of digital psychiatry. Furthermore, it delves into the ethical challenges associated with the expanding influence of artificial intelligence in mental healthcare. Mental health-related illnesses are considered one of the most significant global challenges, impacting millions of individuals worldwide and contributing to high rates of disability.Artificial intelligence is revolutionizing mental healthcare through its applications in computational psychiatry, which harnesses quantitative methods to enhance the understanding, diagnosis, and treatment of mental illnesses. Well-designed Artificial Intelligence (AI) has proven to be a hidden advantage for many, enhancing diagnostic accuracy, promoting personalized therapy, and expanding access to mental health services. AI has introduced innovative solutions by improving mental health assessments, tailoring interventions, and increasing accessibility. It utilizes various tools, including machine learning algorithms, AI-powered chatbots, and wearable devices, for mental health diagnosis, therapy, and monitoring. However, ethical concerns surrounding these tools, along with challenges such as insufficient user engagement and poor integration into existing healthcare systems, continue to persist.
Downloads
References
Mazza, Gabriella (2022-08-29). "AI and the Future of Mental Health". CENGN. (Accessed by 2023-01-17)
Thakkar, Anoushka; Gupta, Ankita; De Sousa, Avinash (2024). "Artificial intelligence in positive mental health: a narrative review". Frontiers in Digital Health. 1280235. doi:10.3389/fdgth.2024.1280235.PMC10982476.PMID38562663 doi: 10.3389/fdgth.2024.1280235 (Accessed by 2024 Mar)
Kevin W; Li, Qiwei; Xie, Yang; Xiao, Guanghua (2023). "Artificial intelligence in mental healthcare: an overview and future perspectives". British Journal of Radiology (1150): 20230213. PMC 10546438. PMID 37698582 doi:10.1259/bjr.20230213.(Accessed by 2023 Sep)
Lu, Tangsheng; Liu, Xiaoxing; Sun, Jie; Bao, Yanping; Schuller, Björn W.; Han, Ying; Lu, Lin (14 July 2023). "Bridging the gap between artificial intelligence and mental health". Science Bulletin. (15): 1606–1610. doi:10.1016/j.scib.2023.07.015. PMID 37474445. (Accessed by Aug 2023)
Shimada, Koki (2023-11-29). "The Role of Artificial Intelligence in Mental Health: A Review". Science Insights. (5): 1119–1127. doi:10.15354/si.23.re820. ISSN 2329-5856. (Accessed by Nov 2023)
6.^https://www.forbes.com/sites/bernardmarr/2023/07/06/ai-in-mental-health-opportunities-and-challenges-in-developing-intelligent-digital-therapies/ (Accessed by Jul 06, 2023)
Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc Neurol. 2017; 2(4):230–43. DOI: 10.1136/svn-2017-000101(Accessed by 2017 Feb)
Beam AL, Kohane IS. Translating Artificial Intelligence into Clinical Care. JAMA. 2016; 316(22):2368–9. DOI: 10.1001/jama.2016.17217 (Accessed by 2016)
Brinker TJ, Hekler A, Hauschild A, Berking C, Schilling B, Enk AH, et al. Comparing artificial intelligence algorithms to 157 German dermatologists: the melanoma classification benchmark. Eur J Cancer. 2019;111:30–7. DOI: 10.1016/j.ejca.2018.12.016(Accessed by 2019)
Topol E Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again. 1st Editio. New York, NY: Basic Books; 2019. (Accessed by 2019)
Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc Neurol. 2017; 2(4):230–43. DOI: 10.1136/svn-2017-000101 (Accessed by 2017 Feb)
Miller DD, Facp CM, Brown EW. Artificial Intelligence in Medical Practice: The Question to the Answer? Am JMed.2018;131(2):129–33.DOI:10.1016/j.amjmed.2017.10.035(Accessed by 2017)
Gabbard GO, Crisp-Han H. The Early Career Psychiatrist and the Psychotherapeutic Identity. Acad Psychiatry. 2017; 41(1):30–4. DOI: 10.1007/s40596-016-0627-7 (Accessed by 2017 Feb)
Mohr D, Zhang M, Schueller SM. Personal Sensing: Understanding Mental Health Using Ubiquitous Sensors and Machine Learning. Annu Rev Clin Psychol. 2017; 13:23–47. DOI: 10.1146/annurev-clinpsy-032816-044949 (Accessed by 2017)
Luxton D.D. Artificial intelligence in psychological practice: current and future applications and implications. Prof.Psychol.Res.Pract.2014;45(5):332–339. doi=10.1037%2Fa0034559 (Accessed by 2014)
Luxton D.D. Recommendations for the ethical use and design of artificial intelligent care providers. Artif. Intell. Med. 2014;62(1):1–10. doi: 10.1016/j.artmed.2014.06.004. (Accessed by 2014)
Shatte A., Hutchinson D.M., Teague S.J. Machine learning in mental health: a scoping review of methods and applications. Psychol. Med. 2019;49(9):1426–1448. doi: 10.1017/S0033291719000151. (Accessed by 2019)
Saeedi A., Saeedi M., Maghsoudi A., Sheba A. Major depressive disorder diagnosis based on effective connectivity in EEG signals: a convolutional neural network and long short-term memory approach. Cogn. Neurodyn. 2021; 15(2):239–252. Doi: 10.1007/s11571-020-09619-0.(Accessed by 2021)
Delnevo G., Mancini G., Roccetti M., Salomoni P., Trombini E., Andrei F. The prediction of body mass index from negative affectivity through machine learning: a confirmatory study. Sensors. 2021; 21(7):2361. Doi: 10.3390/s21072361. (Accessed by 2021)
Fitzpatrick K.K., Darcy A., Vierhile M. Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): a randomized controlled trial. JMIR Ment. Health. 2017;4(2) Doi: 10.2196/mental.7785.(Accessed by 2017)
Sachan D. Self-help robots drive blues away. Lancet Psychiatry. 2018;5(7):547. Doi: 10.1016/S2215-0366(18)30230-X. (Accessed by 2017)
Elvevåg B., Foltz P.W., Weinberger D.R., Goldberg T.E. Quantifying incoherence in speech: an automated methodology and novel application to schizophrenia. Schizophrenia. Res. 2007;93(1–3):304–316. doi: 10.1016/j.schres.2007.03.001. (Accessed by 2007)
Bain E.E., Shafner L., Walling D.P., Othman A.A., Chuang-Stein C., Hinkle J., Hanina A. Use of a novel artificial intelligence platform on mobile devices to assess dosing compliance in a phase 2 clinical trial in subjects with schizophrenia. JMIR mHealth uHealth. 2017;5(2) Doi: 10.2196/mhealth.7030.(Accessed by 2007)
Dellazizzo L., Percie du Sent O., Phraxayavong K., Potvin S., O'Connor K., Dumais A. Exploration of the dialogue components in Avatar Therapy for schizophrenia patients with refractory auditory hallucinations: a content analysis. Clin. Psychol. Psychother. 2018;25(6):878–885. doi: 10.1002/cpp.2322. (Accessed by 2018)
du Sert O.P., Potvin S., Lipp O., Dellazizzo L., Laurelli M., Breton R., Lalonde P., Phraxayavong K., O'Connor K., Pelletier J.F., Boukhalfi T., Renaud P., Dumais A. Virtual reality therapy for refractory auditory verbal hallucinations in schizophrenia: a pilot clinical trial. Schizophrenia. Res. 2018;197:176–181. doi: 10.1016/j.schres.2018.02.031. (Accessed by Feb 2018).
Yu R., Hui E., Lee J., Poon D., Ng A., Sit K., Ip K., Yeung F., Wong M., Shibata T., Woo J. Use of a therapeutic, socially assistive Pet Robot (PARO) in improving mood and stimulating social interaction and communication for people with dementia: study protocol for a randomized controlled trial. JMIR Res. Protoc. 2015;4(2) doi:10.2196/resprot.4189. (Accessed by 2015)
Eder S.J., Nicholson A.A., Stefanczyk M.M., Pieniak M., Martínez-Molina J., Pešout O., Binter J., Smela P., Scharnowski F., Steyrl D. Securing your relationship: quality of intimate relationships during the COVID-19 pandemic can be predicted by attachment style. Front. Psychol. 2021;12 doi: 10.3389/fpsyg.2021.647956. (Accessed by 2021)
Freeman D., Haselton P., Freeman J., Spindling B., Kishore S., Albery E., Denne M., Brown P., Slater M., Nickless A. Automated psychological therapy using immersive virtual reality for treatment of fear of heights: a single-blind, parallel-group, randomised controlled trial. Lancet Psychiatry. 2018;5(8):625–632. Doi: 10.1016/S2215-0366(18)30226-8.(Accessed by 2018)
Mizuno J., Saito D., Sadohara K., Nihei M., Ohnaka S., Suzurikawa J., Inoue T. Effect of the information support robot on the daily activity of older people living alone in actual living environment. Int. J. Environ. Res. Public Health. 2021;18(5):2498. Doi: 10.3390/ijerph18052498. (Accessed by 2021)
David B. Olawade a, Ojima Z. Wada b, Aderonke Odetayo c, Aanuoluwapo Clement David-Olawade d, Fiyinfoluwa Asaolu e, Judith Eberhardt f Enhancing mental health with Artificial Intelligence: Current trends and future prospects doi.org/10.1016/j.glmedi.2024.100099(Accessed by Aug 2024)
S.K. Tikka, B.K. Singh, S.H. Nizamie, S. Garg, S. Mandal, K. Thakur, L.K. Singh Indian Journal of Psychiatry 62(3):p 273-282, May–Jun 2020.DOI: 10.4103/psychiatry.IndianJPsychiatry_91_20 (Accessed by Jun 2020)
N. vinutha, n., pattar, s., sharma, s., shenoy, p. d., & venugopal, k. r. (2020). a machine learning framework for assessment of cognitive and functional impairments in alzheimer’s disease: datahttps://doi.org/10.14283/jpad.2020.7 (Accessed by 2020)
V, K. R., Rajagopalan, S. S., Bhardwaj, S., Panda, R., Reddam, V. R., Ganne, C., … Bharath, R. D. (2018). Machine learning detects EEG microstate alterations in patients living with temporaldoi.org/10.1016/j.seizure.2018.07.007 (Accessed by 2018)
Psychiatry and Clinical Neurosciences © 2019 Japanese Society of Psychiatry and Neurology https://doi.org/10.1111/pcn.12921open_in_new (Accessed by 2019)
N. K. Iyortsuun, S.-H. Kim, M. Jhon, H.-J. Yang, and S. Pant, “A Review of Machine Learning and Deep Learning Approaches on Mental Health Diagnosis,” Healthcare, vol. 11, no. 3, p. 285, J. Doi:10.3390/healthcare11030285 (Accessed by Jan. 2023)
A. Thieme, D. Belgrave, and G. Doherty, “Machine learning in mental health: A systematic review of the HCI literature to support the development of effective and implementable ML systems,” ACM Trans. Comput.-Hum. Interact., vol. 27, no. 5, Doi : https://doi.org/10.1145/3398069 (Accessed by Aug. 2020 )
S. S. Sohail, F. Farhat, Y. Himeur, M. Nadeem, D. Ø. Madsen, Y. Singh, S. Atalla, and W. Mansoor, “Decoding ChatGPT: A taxonomy of existing research, current challenges, and possible future directions,” Journal of King Saud University - Computer and Information Sciences, vol. 35, no. 8, p. 101675, Doi: . https://doi.org/10.1016/j.jksuci.2023.101675 (Accessed by Sep. 2023)
A. Ahmed, S. Aziz, C. T. Toro, M. Alzubaidi, S. Irshaidat, H. A. Serhan, A. A. Abd-alrazaq, and M. Househ, “Machine learning models to detect anxiety and depression through social media: A scoping review,” Computer Methods and Programs in Biomedicine Update, vol. 2, p. 100066, 2022. DOI: 10.1016/j.cmpbup.2022.100066 (Accessed by 2024)
D. Dangi, A. Bhagat, and D. Kumar Dixit, “Emerging Applications of Artificial Intelligence, Machine learning and Data Science,” Computers, Materials & Continua, vol. 70, no. 3, pp. 5399–5419, 2022. Doi: https://doi.org/10.32604/cmc.2022.020431 (Accessed by Sep. 2022)
A. B. Osman, F. Tabassum, M. J. A. Patwary, A. Imteaj, T. Alam, M. A. S. Bhuiyan, and M. H. Miraz, “Examining Mental Disorder/Psychological Chaos through Various ML and DL Techniques: A Critical Review,” Annals of Emerging Technologies in Computing, vol. 6, no. 2, pp. 61–71, (Accessed by Apr. 2022).
E. Cano-Marin, M. Mora-Cantallops, and S. Sanchez-Alonso, “Twitter ´ as a predictive system: A systematic literature review,” Journal of Business Research, vol. 157, p. 113561, (Accessed by Mar. 2023.)
Andersson, S., Bathula, D. R., Iliadis, S. I., Walter, M., & Skalkidou, A. (2021). Predicting women with depressive symptoms postpartum with machine learning methods. Scientific Reports, 11(1). Doi:10.1038/s41598-021-86368-y(Accessed by Apr 2021)
David B. Olawade, Ojima Z. Wada, Aderonke Odetayo, Aanuoluwapo Clement David-Olawade,Fiyinfoluwa Asaolu,Judith Eberhardt Enhancing mental health with Artificial Intelligence: Current trends and future prospects.DOI 10.1016/j.glmedi.2024.100099 (Accessed by April 2021)
Tai, A. M., Albuquerque, A., Carmona, N. E., Subramanieapillai, M., Cha, D. S., Sheko, M., … mcintyre, r. s. (2019). machine learning and big data: implications for disease modeling and therapeutic discovery in psychiatry. artificial intelligence in medicine, 101704. doi:10.1016/j.artmed.2019.101704 (accessed by 2019 aug)
Sharma A , Verbeke WJMI . Understanding importance of clinical biomarkers for diagnosis of anxiety disorders using machine learning models . PLOS ONE 2021 ; 16 ( ): e0251365 Doi: https://doi.org/10.1371/journal.pone.0251365 (Asccessed by 10 May,2021)
V, K. R., Rajagopalan, S. S., Bhardwaj, S., Panda, R., Reddam, V. R., Ganne, C., … Bharath, R. D. (2018). Machine learning detects EEG microstate alterations in patients living with temporaldoi.org/10.1016/j.seizure.2018.07.007 (Accessed by 2018)
Psychiatry and Clinical Neurosciences © 2019 Japanese Society of Psychiatry and Neurology https://doi.org/10.1111/pcn.12921open_in_new (Accessed by 2019)
Ay, B., Yildirim, O., Talo, M., Baloglu, U. B., Aydin, G., Puthankattil, S. D., & Acharya, U. R. (2019). Automated Depression Detection Using Deep Representation and Sequence Learning with EEG Signals. Journal of Medical Systems, 43(7). Doi:10.1007/s10916-019-1345-y (Accessed by 2019)
Mahato, S., Goyal, N., Ram, D., & Paul, S. (2020). Detection of Depression and Scaling of Severity Using Six Channel EEG Data. Journal of Medical Systems, 44(7). Doi:10.1007/s10916-020-01573-y(Accessed by 2020)
Graham, S., Depp, C., Lee, E. E., Nebeker, C., Tu, X., Kim, H.-C., & Jeste, D. V. (2019). Artificial Intelligence for Mental Health and Mental Illnesses: An Overview https://doi.org/10.1007/s11920-019-1094-0(Accessed by 2019)
Durstewitz, D., Koppe, G., & Meyer-Lindenberg, A. (2019). Deep neural networks in psychiatry. Molecular Psychiatry. doi:10.1038/s41380-019-036 (Accessed by 2019)
Lovejoy, C. A., Buch, V., & Maruthappu, M. (2019). Technology and mental health: The role of artificial intelligence. European Psychiatry, 55, 1–3https://doi.org/10.1016/j.eurpsy.2018.08.004 (Accessed by 2019)
Cearns, M., Hahn, T., & Baune, B. T. (2019). Recommendations and future directions for supervised machine learning in psychiatry. Translational Doi.org/10.1038/s41398-019-06072(Accessed by 2019)
Washington, P., Park, N., Srivastava, P., Voss, C., Kline, A., Varma, M., … Wall, D. P. (2020). Data-Driven Diagnostics and the Potential of Mobile Artificial https://doi.org/10.1016/j.bpsc.2019.11.015 (Accessed by 2020)
Su C, Xu Z, Pathak J, Wang F. Deep learning in mental health outcome research: a Scoping review. Transl Psychiatry 2020; 10: 116. doi: https://doi.org/10.1038/s41398-020-0780-3 (Accessed by 2020) 144. N. K. Iyortsuun, S.-H. Kim, M. Jhon, H.-J. Yang, and S. Pant, “A Review of Machine Learning and Deep Learning Approaches onMental Health Diagnosis,” Healthcare, vol. 11, no. 3, p. 285, doi: 10.3390/healthcare11030285 (Accessed by 17 Jan. 2023).
A. Thieme, D. Belgrave, and G. Doherty, “Machine learning in mental Health: A systematic review of the HCI literature to support the development of effective and implementable ML systems,” ACM Trans. Comput.-Hum. Interact., vol. 27, no. 5, Doi: https://doi.org/10.1145/3398069 (Accessed by 17 Aug. 2020).
Z. Jan, N. Ai-Ansari, O. Mousa, A. Abd-Alrazaq, A. Ahmed, T. Alam, And M. Househ, “The Role of Machine Learning in Diagnosing Bipolar Disorder: Scoping Review,” Journal of Medical Internet Research, Vol. 23, no. 11, p. e29749, doi:10.2196/29749 (Accessed by 19 Nov. 2021).
R. Fang, S. Pouyanfar, Y. Yang, S.-C. Chen, and S. S. Iyengar, “Computational health informatics in the big data age: A survey,” Acm Computing Surveys, vol. 49, no. 1, doi: https://doi.org/10.1145/2932707 (Accessed by 16 Jun. 2016).
E. Loh, “Medicine and the rise of the robots: A qualitative review of Recent advances of artificial intelligence in health,” BMJ Leader, vol. 2, No. 2, pp. 59–63, Doi: https://doi.org/10.1136/leader-2018-000071 ( Accessed by Jun. 2018).
A. B. Osman, F. Tabassum, M. J. A. Patwary, A. Imteaj, T. Alam, M. A. S. Bhuiyan, and M. H. Miraz, “Examining Mental Disorder/Psychological Chaos through Various ML and DL Techniques: A Critical Review,” Annals of Emerging Technologies in Computing, Vol. 6, no. 2, pp. 61–71,DOI: 10.33166/AETiC.2022.02.005 (Accessed by 1 Apr. 2022).
https://weka.sourceforge.io/doc.dev/weka/classifiers/bayes/NaiveBayesUpdateable.html (Accessed by 2021)
https://weka.sourceforge.io/doc.dev/weka/classifiers/bayes/NaiveBayesUpdateable.html (Accessed by 2021)
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.