Advanced Sentiment Analysis Models for Crisis-Time Brand Trust Monitoring and Recovery

Authors

  • Samuel Augustine Umezurike Jo and Samak Global Services Ltd, Benin Kebbi, Nigeria Author
  • Oluwatolani Vivian Akinrinoye University of Pittsburgh (MBA), Pittsburgh USA Author
  • Omolola Temitope Kufile Amazon Advertising, United States Author
  • Abiodun Yusuf Onifade Independent Researcher, California, USA Author
  • Bisayo Oluwatosin Otokiti Department of Business and Entrepreneurship, Kwara State University, Nigeria Author
  • Onyinye Gift Ejike The Velvet Expression Nigeria Author

DOI:

https://doi.org/10.32628/IJSRST25123134

Keywords:

sentiment analysis, brand trust, crisis communication, social media, NLP models, trust recovery

Abstract

In an era where brand perception can be reshaped within minutes on digital platforms, organizations face immense reputational risks during crises. Whether due to product failures, executive scandals, data breaches, or socio-political missteps, brand crises elicit public backlash that unfolds rapidly across social media, news outlets, and consumer forums. Monitoring and restoring brand trust under such volatile conditions demands tools capable of real-time, context-sensitive, and nuanced analysis of public sentiment. This paper explores the role of advanced sentiment analysis models in crisis-time brand trust monitoring and recovery. Drawing on recent advancements in natural language processing (NLP), deep learning, and emotion-aware AI, we examine how modern models—such as transformer-based architectures (e.g., BERT, RoBERTa), hybrid rule-based-deep learning systems, and affective computing algorithms—outperform traditional lexicon and statistical techniques in capturing the subtleties of sentiment, emotion, and trust dynamics during brand crises. We develop a conceptual framework that integrates sentiment analytics with crisis communication strategies and outline its application through cross-sector scenarios. Through a systematic literature review, we highlight challenges in multilingual processing, sarcasm detection, temporal sentiment tracking, and model explainability. The paper concludes with recommendations for deploying sentiment analysis tools responsibly, ensuring ethical AI governance, and aligning model outputs with actionable recovery strategies for brand managers.

Downloads

Download data is not yet available.

References

P. Shivarkar, “Improving sentiment analysis of disaster related social media content,” Dec. 2018, Accessed: May 22, 2025. [Online]. Available: https://hdl.handle.net/10657.1/1414

A. Morgan and V. Wilk, “Social media users’ crisis response: A lexical exploration of social media content in an international sport crisis,” Public Relat. Rev., vol. 47, no. 4, p. 102057, Nov. 2021, doi: 10.1016/j.pubrev.2021.102057.

S. Banyongen, “In the Eye of the Storm: Social Media and Crisis Management,” in Crisis Management - Principles, Roles and Application, IntechOpen, 2023. doi: 10.5772/intechopen.109449.

T. J. Vogus, “Mindful Organizing: Establishing and Extending the Foundations of Highly Reliable Performance,” Apr. 19, 2011, Social Science Research Network, Rochester, NY: 1904613. [Online]. Available: https://papers.ssrn.com/abstract=1904613

T. Ewertowski, “A Standard-Based Concept of the Integration of the Corporate Recovery Management Systems: Coping with Adversity and Uncertainty during a Pandemic,” Sustainability, vol. 14, no. 3, Art. no. 3, Jan. 2022, doi: 10.3390/su14031254.

J. Nadeau, R. Rutter, and F. Lettice, “Social media responses and brand personality in product and moral harm crises: why waste a good crisis?,” J. Mark. Manag., Jul. 2020, Accessed: May 22, 2025. [Online]. Available: https://www.tandfonline.com/doi/abs/10.1080/0267257X.2020.1764080

E. C. Chukwuma-Eke, O. Y. Ogunsola, and N. J. Isibor, “A Conceptual Approach to Cost Forecasting and Financial Planning in Complex Oil and Gas Projects,” Int. J. Multidiscip. Res. Growth Eval., vol. 3, no. 1, pp. 819–833, 2022, doi: 10.54660/.IJMRGE.2022.3.1.819-833.

B. S. Adelusi, D. Osamika, M. C. Kelvin-Agwu, A. Y. Mustapha, and N. Ikhalea, “A Deep Learning Approach to Predicting Diabetes Mellitus Using Electronic Health Records,” J. Front. Multidiscip. Res., vol. 3, no. 1, pp. 47–56, 2022, doi: 10.54660/.IJFMR.2022.3.1.47-56.

T. Muparadzi and L. Rodze, “Business Continuity Management in a Time of Crisis: Emerging Trends for Commercial Banks in Zimbabwe during and Post the Covid-19 Global Crisis,” Open J. Bus. Manag., vol. 9, no. 3, Art. no. 3, Apr. 2021, doi: 10.4236/ojbm.2021.93063.

Paris Descartes University, 45 Rue Des Saints-Pères, Paris, France, C. Khalil, and S. Khalil, “A Governance Framework for Adopting Agile Methodologies,” Int. J. E-Educ. E-Bus. E-Manag. E-Learn., vol. 6, no. 2, pp. 111–119, 2016, doi: 10.17706/ijeeee.2016.6.2.111-119.

A. Abisoye and J. I. Akerele, “A High-Impact Data-Driven Decision-Making Model for Integrating Cutting-Edge Cybersecurity Strategies into Public Policy, Governance, and Organizational Frameworks,” Int. J. Multidiscip. Res. Growth Eval., vol. 2, no. 1, pp. 623–637, 2021, doi: 10.54660/.IJMRGE.2021.2.1.623-637.

G. O. Babatunde, O. O. Amoo, C. Ike, and A. B. Ige, “A Penetration Testing and Security Controls Framework to Mitigate Cybersecurity Gaps in North American Enterprises,” vol. 5, no. 12, 2022.

B. I. Adekunle, E. C. Chukwuma-Eke, E. D. Balogun, and K. O. Ogunsola, “A Predictive Modeling Approach to Optimizing Business Operations: A Case Study on Reducing Operational Inefficiencies through Machine Learning,” Int. J. Multidiscip. Res. Growth Eval., vol. 2, no. 1, pp. 791–799, 2021, doi: 10.54660/.IJMRGE.2021.2.1.791-799.

Z. Umar, O. B. Adekoya, J. A. Oliyide, and M. Gubareva, “Media sentiment and short stocks performance during a systemic crisis,” Int. Rev. Financ. Anal., vol. 78, p. 101896, Nov. 2021, doi: 10.1016/j.irfa.2021.101896.

T. Bridgman and E. Bell, “Seeing and Being Seen as a Management Learning and Education Scholar: Rejoinder to ‘Identifying Research Topic Development in Business and Management Education Research Using Legitimation Code Theory,’” J. Manag. Educ., vol. 40, no. 6, pp. 692–699, Dec. 2016, doi: 10.1177/1052562916662103.

E. C. Chukwuma-Eke, O. Y. Ogunsola, and N. J. Isibor, “A Conceptual Approach to Cost Forecasting and Financial Planning in Complex Oil and Gas Projects,” Int. J. Multidiscip. Res. Growth Eval., vol. 3, no. 1, pp. 819–833, 2022, doi: 10.54660/.IJMRGE.2022.3.1.819-833.

O. Hamza, A. Collins, A. Eweje, and G. O. Babatunde, “A Unified Framework for Business System Analysis and Data Governance: Integrating Salesforce CRM and Oracle BI for Cross-Industry Applications,” Int. J. Multidiscip. Res. Growth Eval., vol. 4, no. 1, pp. 653–667, 2023, doi: 10.54660/.IJMRGE.2023.4.1.653-667.

N. (Chris) Yao, J. Wei, W. Zhu, and A. Bondar, “The quicker, the better? The antecedents and consequences of response timing strategy in the aftermath of a corporate crisis,” Balt. J. Manag., vol. 14, no. 1, pp. 19–38, Oct. 2018, doi: 10.1108/BJM-06-2017-0185.

M. Janssen and H. Van Der Voort, “Adaptive governance: Towards a stable, accountable and responsive government,” Gov. Inf. Q., vol. 33, no. 1, pp. 1–5, Jan. 2016, doi: 10.1016/j.giq.2016.02.003.

A. G. N. E. K. M. Y. Alemdar, “HOW TO MANAGE REPUTATİON DURİNG CRISIS: AN ANALYSİS OF TURKİSH WHİTE MEAT SECTOR DURİNG THE AVIAN INFLUENZA (BİRD FLU) CRİSİS,” Yaşar Üniversitesi E-Derg., vol. 3, no. 12, Art. no. 12, Jun. 2008, doi: 10.19168/jyu.96105.

F. C. Okolo, E. A. Etukudoh, O. Ogunwole, G. O. Osho, and J. O. Basiru, “Advances in Cyber-Physical Resilience of Transportation Infrastructure in Emerging Economies and Coastal Regions,” Int. J. Multidiscip. Res. Growth Eval., vol. 4, no. 1, pp. 1188–1198, 2023, doi: 10.54660/.IJMRGE.2023.4.1.1188-1198.

Afees Olanrewaju Akinade, Peter Adeyemo Adepoju, Adebimpe Bolatito Ige, Adeoye Idowu Afolabi, and Olukunle Oladipupo Amoo, “Advancing segment routing technology: A new model for scalable and low-latency IP/MPLS backbone optimization,” Open Access Res. J. Sci. Technol., vol. 5, no. 2, pp. 077–095, Aug. 2022, doi: 10.53022/oarjst.2022.5.2.0056.

M. Ruotsala, “Agile and Lean processes on an IoT development”.

M. Pop, “Agile Virtualization – The importance of Scrum frame- work in creating synergies in global organizations”.

O. Hamza, A. Collins, A. Eweje, and G. O. Babatunde, “Agile-DevOps Synergy for Salesforce CRM Deployment: Bridging Customer Relationship Management with Network Automation,” Int. J. Multidiscip. Res. Growth Eval., vol. 4, no. 1, pp. 668–681, 2023, doi: 10.54660/.IJMRGE.2023.4.1.668-681.

Y. G. Hassan, A. Collins, G. O. Babatunde, A. A. Alabi, and S. D. Mustapha, “AI-driven intrusion detection and threat modeling to prevent unauthorized access in smart manufacturing networks,” Int. J. Multidiscip. Res. Growth Eval., vol. 5, no. 1, pp. 1197–1202, 2024, doi: 10.54660/.IJMRGE.2024.5.1.1197-1202.

Y. G. Hassan, A. Collins, G. O. Babatunde, A. A. Alabi, and S. D. Mustapha, “AI-powered cyber-physical security framework for critical industrial IoT systems,” Int. J. Multidiscip. Res. Growth Eval., vol. 5, no. 1, pp. 1158–1164, 2024, doi: 10.54660/.IJMRGE.2024.5.1.1158-1164.

O. T. Uzozie, O. Onaghinor, O. J. Esan, G. O. Osho, and J. O. Omisola, “AI-Driven Supply Chain Resilience: A Framework for Predictive Analytics and Risk Mitigation in Emerging Markets,” Int. J. Multidiscip. Res. Growth Eval., vol. 4, no. 1, pp. 1141–1150, 2023, doi: 10.54660/.IJMRGE.2023.4.1.1141-1150.

D. Cohen, M. Lindvall, and P. Costa, “An Introduction to Agile Methods,” in Advances in Computers, vol. 62, Elsevier, 2004, pp. 1–66. doi: 10.1016/S0065-2458(03)62001-2.

N. Perkin and P. Abraham, Building the agile business through digital transformation, 1st Edition. London ; New York, NY: Kogan Page Limited, 2017.

M. E. Porter, Competitive strategy: techniques for analyzing industries and competitors: with a new introduction. New York: Free Press, 1998.

B. Fitzgerald and K.-J. Stol, “Continuous software engineering: A roadmap and agenda,” J. Syst. Softw., vol. 123, pp. 176–189, Jan. 2017, doi: 10.1016/j.jss.2015.06.063.

“CSEIT2311254.”

“CSEIT23112546.”

K. Krawiecka, “Leveraging the heterogeneity of the internet of things devices to improve the security of smart environments,” http://purl.org/dc/dcmitype/Text, University of Oxford, 2022. [Online]. Available: https://ora.ox.ac.uk/objects/uuid:6346188c-4d60-4001-ae58-b8ae3caea3d9

O. O. Ogbuagu, A. O. Mbata, O. D. Balogun, O. Oladapo, O. O. Ojo, and M. Muonde, “Optimizing supply chain logistics for personalized medicine: Strengthening drug discovery, production, and distribution,” Int. J. Multidiscip. Res. Growth Eval., vol. 4, no. 1, pp. 832–841, 2023, doi: 10.54660/.IJMRGE.2023.4.1-832-841.

“Optimizingriskmanagementframeworksinbanking.”

“(PDF) An architecture governance approach for Agile development by tailoring the Spotify model.” [Online]. Available: https://www.researchgate.net/publication/352713951_An_architecture_governance_approach_for_Agile_development_by_tailoring_the_Spotify_model

“(PDF) Large-Scale Agile Frameworks: A Comparative Review,” ResearchGate, doi: 10.31284/j.jasmet.2021.v2i1.1832.

O. J. Esan, O. T. Uzozie, O. Onaghinor, G. O. Osho, and J. O. Omisola, “Policy and Operational Synergies: Strategic Supply Chain Optimization for National Economic Growth,” Int. J. Soc. Sci. Except. Res., vol. 1, no. 1, pp. 239–245, 2022, doi: 10.54660/IJSSER.2022.1.1.239-245.

O. O. Ogbuagu, A. O. Mbata, O. D. Balogun, O. Oladapo, O. O. Ojo, and M. Muonde, “Quality assurance in pharmaceutical manufacturing: bridging the gap between regulations, supply chain, and innovations,” Int. J. Multidiscip. Res. Growth Eval., vol. 4, no. 1, pp. 823–831, 2023, doi: 10.54660/.IJMRGE.2023.4.1-823-831.

G. Pusceddu, L. Moi, and F. Cabiddu, “Tourist experience in the post-covid era: new perspectives,” 2021. Accessed: May 23, 2025. [Online]. Available: https://iris.unica.it/handle/11584/322867

G. Salviotti, N. Abbatemarco, L. M. D. Rossi, and K. Bjoernland, “Understanding the Role of Leadership Competencies in Cyber Crisis Management: A Case Study,” Hawaii Int. Conf. Syst. Sci. 2023 HICSS-56, Jan. 2023, [Online]. Available: https://aisel.aisnet.org/hicss-56/os/cybersecurity/3

E. O. Alonge, N. L. Eyo-Udo, B. C. Ubanadu, A. I. Daraojimba, E. D. Balogun, and K. O. Ogunsola, “Real-Time Data Analytics for Enhancing Supply Chain Efficiency,” Int. J. Multidiscip. Res. Growth Eval., vol. 2, no. 1, pp. 759–771, 2021, doi: 10.54660/.IJMRGE.2021.2.1.759-771.

G. Spais and P. and Paul, “A crisis management model for marketing education: reflections on marketing education system’s transformation in view of the covid-19 crisis,” Mark. Educ. Rev., vol. 31, no. 4, pp. 322–339, Oct. 2021, doi: 10.1080/10528008.2021.1951120.

J. Dahlke, K. Bogner, M. Becker, M. P. Schlaile, A. Pyka, and B. Ebersberger, “Crisis-driven innovation and fundamental human needs: A typological framework of rapid-response COVID-19 innovations,” Technol. Forecast. Soc. Change, vol. 169, p. 120799, Aug. 2021, doi: 10.1016/j.techfore.2021.120799.

“systems-12-00220.”

G. Salem, “Social Media: A Tourism Crisis Management Tool? Insights From The Lebanese Hospitality Sector,” Soc. Media, vol. 2, no. 2.

Y. Cheng, C. Funkhouser, T. Raabe, and R. Cross, “Examining organization-public relationships in crises: A thematic meta-analysis of updated literature from 1997 to 2019,” J. Contingencies Crisis Manag., vol. 30, no. 2, pp. 148–160, 2022, doi: 10.1111/1468-5973.12370.

F. C. Okolo, E. A. Etukudoh, O. Ogunwole, G. O. Osho, and J. O. Basiru, “Systematic Review of Business Analytics Platforms in Enhancing Operational Efficiency in Transportation and Supply Chain Sectors,” Int. J. Multidiscip. Res. Growth Eval., vol. 4, no. 1, pp. 1199–1208, 2023, doi: 10.54660/.IJMRGE.2023.4.1.1199-1208.

E. Mucelli, “CRISIS MANAGEMENT: AN ANALYSIS OF THE FAST FASHION INDUSTRY,” Dec. 2024, Accessed: May 23, 2025. [Online]. Available: https://unitesi.unive.it/handle/20.500.14247/17114

D. Nyangoma, E. M. Adaga, N. J. Sam-Bulya, and G. O. Achumie, “Unified Digital Platforms for Refugee Case Management: A Framework for Service Coordination and Efficiency,” Comput. Sci. IT Res. J., vol. 6, no. 3, Art. no. 3, Apr. 2025, doi: 10.51594/csitrj.v6i3.1874.

A. J. Vaid and R. Chaudhary, “Review paper on impact of behavioral biases in financial decision- making,” World J. Adv. Res. Rev., vol. 16, no. 2, pp. 989–997, 2022, doi: 10.30574/wjarr.2022.16.2.1236.

“The relationship between the use of information systems and the performance of strategic decision-making processes. An empirical analysis.” [Online]. Available: https://bradscholars.brad.ac.uk/entities/publication/2186a6cf-cb88-434f-b023-f6abf68f3614

A. Lundberg, Successful with the Agile Spotify Framework: Squads, Tribes and Chapters - The Next Step After Scrum and Kanban? BoD – Books on Demand, 2020.

M. M. Pellegrini, F. Ciampi, G. Marzi, and B. Orlando, “The relationship between knowledge management and leadership: mapping the field and providing future research avenues,” J. Knowl. Manag., vol. 24, no. 6, pp. 1445–1492, Jun. 2020, doi: 10.1108/JKM-01-2020-0034.

D. Lessard, D. J. Teece, and S. Leih, “The Dynamic Capabilities of Meta‐Multinationals,” Glob. Strategy J., vol. 6, no. 3, pp. 211–224, Aug. 2016, doi: 10.1002/gsj.1126.

Downloads

Published

17-06-2025

Issue

Section

Research Articles