The Effect of Reconstruction Kernel on Low-Contrast Detectability in ACR CT Phantom Images Evaluated using the Two-Alternative Forced Choice Method
DOI:
https://doi.org/10.32628/IJSRST2512316Keywords:
low contrast detectability, 2-AFC, reconstruction kernel, noiseAbstract
Low-contrast detectability (LCD) is an important aspect of medical imaging. This study aimed to analyze the effect of reconstruction kernel variations on the LCD of ACR CT phantoms evaluated using the two-alternative forced choice (2-AFC) method. The ACR CT phantom was scanned using a Philips MX 16-slice CT scanner with four reconstruction kernels: SA, SC, EA, and EC. LCD analysis was performed using Module #2 of the ACR CT phantom, focusing on 5-mm diameter objects. Seven medical physicist observers with a minimum of three years of experience participated in the study. A total of 80 questions were administered, divided into four sets of 20 items. The results showed that the reconstruction kernel significantly affected LCD. The SA kernel produced the highest detection performance, achieving a percentage correct (PC) score of 93.6%, while sharper kernels, such as the EC kernel, exhibited decreased performance, with a PC score of 90.7%. Analysis of observer response variability showed no significant differences among observers (p = 0.468). In conclusion, the 2-AFC method proved effective for LCD assessment, and kernels with smoother reconstruction characteristics are recommended to improve LCD in low-contrast imaging.
Downloads
References
Choopani, M. R., Abedi, I., & Dalvand, F. 2022. Pragmatic approaches to reducing radiation dose in brain computed tomography scan using scan parameter modification. Journal of Medical Signals and Sensors, 12(3), 219–226. (Juli 2022) https://doi.org/10.4103/jmss.JMSS_83_20.
Goldman, L. W. 2007. Principles of CT: Radiation dose and image quality. Journal of Nuclear Medicine Technology, 35(4), 213–225. (Nov 2007) https://doi.org/10.2967/jnmt.106.037846.
Omigbodun, A., Vaishnav, J. Y., & Hsieh, S. S. 2021. Rapid measurement of the low contrast detectability of CT scanners. Medical Physics, 48(3), 1054–1063. (April 2021) https://doi.org/10.1002/mp.14657.
Hernandez-Giron, I., Calzado, A., Geleijns, J., Joemai, R. M. S., & Veldkamp, W. J. H. 2015. Low contrast detectability performance of model observers based on CT phantom images: KVp influence. Physica Medica, 31(7), 798–807. (April 2015) https://doi.org/10.1016/j.ejmp.2015.04.012.
Noo, F., Wunderlich, A., Heuscher, D., Schmitt, K., & Yu, Z. 2013. A nonparametric approach for statistical comparison of results from alternative forced-choice experiments. Medical Imaging 2013: Image Perception, Observer Performance, and Technology Assessment, 8673, 86730F. (Des 2013) https://doi.org/10.1117/12.2008154.
Vancleef, K., Read, J. C. A., Herbert, W., Goodship, N., Woodhouse, M., & Serrano-Pedraza, I. 2018. Two choices good, four choices better: For measuring stereoacuity in children, a four-alternative forced-choice paradigm is more efficient than two. PLoS ONE, 13(7). (July 2018) https://doi.org/10.1371/journal.pone.0201366.
Solomon, J., Marin, D., Choudhury, K. R., Patel, B., & Samei, E. 2017. Effect of radiation dose reduction and reconstruction algorithm on image noise, contrast, resolution, and detectability of subtle hypoattenuating liver lesions at Multidetector CT: Filtered back projection versus a commercial model-based iterative reconstruction algorithm. Radiology, 284(3), 777–787. (Nov 2017) https://doi.org/10.1148/radiol.2017161736.
Mileto, A., Zamora, D. A., Alessio, A. M., Pereira, C., Liu, J., Bhargava, P., Carnell, J., Cowan, S. M., Dighe, M. K., Gunn, M. L., Kim, S., Kolokythas, O., Lee, J. H., Maki, J. H., Moshiri, M., Nasrullah, A., O’Malley, R. B., Schmiedl, U. P., Soloff, E. V., … Kanal, K. M. 2018. CT detectability of small low-contrast hypoattenuating focal lesions: Iterative reconstructions versus filtered back projection. Radiology, 289(2), 443–454. (May 2018) https://doi.org/10.1148/radiol.2018180137.
Ardila Pardo, G. L., Conzelmann, J., Genske, U., Hamm, B., Scheel, M., & Jahnke, P. 2020. 3D printing of anatomically realistic phantoms with detection tasks to assess the diagnostic performance of CT images. European Radiology, 30(8), 4557–4563. (March 2020) https://doi.org/10.1007/s00330-020-06808-7.
Dance, D. R., Christofides, S., Maidment, A. D. A., Mclean, I. D., & Ng, K. H. 2014. Diagnostic Radiology Physics: A Handbook for Teachers and Students.
Seeram, E. 2016. Computed Tomography Physical Principles, Clinical Applications, and Quality Control (fourth edition). Saunders company. http://evolve.elsevier.com/Seeram.
Davis, A. T., Nash, D., Palmer, A. L., & Nisbet, A. 2022. Improving the quality of head and neck radiotherapy CT images using a second image reconstruction set. Physica Medica, 102, 110–118. https://doi.org/10.1016/j.ejmp.2022.09.008.
R. T. Yunardi, Q. Istiqomah and R. Latifah. 2019. Contrast-enhanced Based on Abdominal Kernels for CT Image Noise Reduction. International Conference of Artificial Intelligence and Information Technology (ICAIIT). Yogyakarta, Indonesia. pp. 293-296, doi: 10.1109/ICAIIT.2019.8834645.
Mustafidah, T., Rulaningtyas, R., & Muzammil, A. 2022. Ct-Scan Image Optimization With Tube Current Variation In Some Kernel Filters CT-Scan Image Optimization with Tube Current Variation in Some Kernel Filters Based on Signal to Noise Ratio (SNR) Value Corresponding Author, Guarantor.
Rusandu, A., Beck, A., Hegge, A., & Engh, G. 2022. Image Quality In Abdominal CT: A Comparison Of Two Reconstruction Algorithms In Filtered Back Projection (Fbp). Medical Imaging and Radiotherapy Journal (MIRTJ), 39(1), 39. https://doi.org/10.47724/MIRTJ.2022.i01.a001.
Mackin, D., Ger, R., Gay, S., Dodge, C., Zhang, L., Yang, J., Jones, A. K., & Court, L. 2019. Matching and Homogenizing Convolution Kernels for Quantitative Studies in Computed Tomography. Investigative Radiology, 54(5), 288–295. https://doi.org/10.1097/RLI.0000000000000540.
Solomon, J. B., Christianson, O., & Samei, E. 2012. Quantitative comparison of noise texture across CT scanners from different manufacturers. Medical Physics, 39(10), 6048–6055. https://doi.org/10.1118/1.4752209.
Oostveen, L. J., Boedeker, K., Shin, D., Abbey, C. K., & Sechopoulos, I. 2022. Visibility of noise texture changes in CT images. 54. https://doi.org/10.1117/12.2610736
Völgyes, D., Pedersen, M., Stray-Pedersen, A., Waaler, D., & Martinsen, A. C. T. 2017. How different iterative and filtered back projection kernels affect computed tomography numbers and low contrast detectability. Journal of Computer Assisted Tomography, 41(1), 75–81. (Sept 2022) https://doi.org/10.1097/RCT.0000000000000491.
Pinsaitong, N., Asavaphatiboon, S., & Tangboonduangjit, P. 2019. Evaluation of image quality and radiation dose in kilovoltage cone beam computed tomography. Journal of Physics: Conference Series, 1248(1). https://doi.org/10.1088/1742-6596/1248/1/012050.
Shunhavanich, P., Mei, K., Shapira, N., Stayman, J. W., McCollough, C. H., Gang, G., Leng, S., Geagan, M., Yu, L., Noël, P. B., & Hsieh, S. S. 2024. 3D printed phantom with 12 000 submillimeter lesions to improve efficiency in CT detectability assessment. Medical Physics, 51(5), 3265–3274. (Nov 2023) https://doi.org/10.1002/mp.17064.
Hernandez-Giron, I., Geleijns, J., Calzado, A., & Veldkamp, W. J. H. 2011. Automated assessment of low contrast sensitivity for CT systems using a model observer. Medical Physics, 38(SUPPL.1). (July 2011) https://doi.org/10.1118/1.3577757.
Anam, C., Naufal, A., Sutanto, H., Fujibuchi, T., & Dougherty, G. 2024. A novel method for developing contrast-detail curves from clinical patient images based on statistical low-contrast detectability. Biomedical Physics and Engineering Express, 10(4). (May 2024) https://doi.org/10.1088/2057-1976/ad4b20.
Anam, C., Naufal, A., Fujibuchi, T., Matsubara, K., & Dougherty, G. 2022. Automated development of the contrast–detail curve based on statistical low-contrast detectability in CT images. Journal of Applied Clinical Medical Physics, 23(9). (June 2022) https://doi.org/10.1002/acm2.13719.
Setiawati, E., Anam, C., Widyasari, W., & Dougherty, G. 2023. The Quantitative Effect of Noise and Object Diameter on Low-Contrast Detectability of AAPM CT Performance Phantom Images. Atom Indonesia, 49(1), 61–66. (Oct 2023) https://doi.org/10.55981/aij.2023.1228.
Anam, C., Fujibuchi, T., Toyoda, T., Sato, N., Haryanto, F., Widita, R., Arif, I., & Dougherty, G. 2019. An investigation of a CT noise reduction using a modified of wiener filtering-edge detection. Journal of Physics: Conference Series, 1217(1). (Nov 2019) https://doi.org/10.1088/1742-6596/1217/1/012022.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.