Recent Advances in the Synthesis, Characterization, and Applications of Copper-Based Metal-Organic Frameworks (Cu-MOFs): A Comprehensive Review
DOI:
https://doi.org/10.32628/IJSRST2512324Abstract
Copper-based metal-organic frameworks (Cu-MOFs) have emerged as a class of highly versatile materials due to their tunable porosity, high surface area, and excellent catalytic, adsorption, and sensing capabilities. These hybrid materials, composed of copper metal centers and organic linkers, have gained significant attention for their applications in catalysis, gas storage, environmental remediation, drug delivery, and energy storage. The unique electronic properties of copper provide Cu-MOFs with distinct advantages over other metal-based MOFs, making them particularly attractive for a wide range of scientific and industrial applications. This review provides a comprehensive analysis of the recent advances in the synthesis, characterization, and applications of Cu-MOFs. Various synthesis strategies, including conventional methods such as solvothermal and hydrothermal synthesis, as well as emerging techniques like mechanochemical, microwave-assisted, and green synthesis approaches, are discussed in detail. Furthermore, post-synthetic modifications (PSM) and functionalization strategies are explored to highlight their role in enhancing Cu-MOF properties and performance. To gain a deeper understanding of their structural and functional attributes, this review outlines advanced characterization techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). These methods provide critical insights into the crystallinity, morphology, chemical composition, and thermal stability of Cu-MOFs. Moreover, the paper explores the diverse applications of Cu-MOFs, emphasizing their role in heterogeneous catalysis, CO₂ capture, gas separation, photocatalysis, drug delivery, biosensing, and energy conversion technologies. The challenges associated with Cu-MOFs, including stability concerns, scalability, and environmental implications, are also addressed, alongside potential future research directions aimed at overcoming these limitations. Overall, this review presents an in-depth perspective on the current state of Cu-MOF research, highlighting key advancements and future opportunities in material development and application. By integrating insights from recent studies, this work aims to serve as a valuable resource for researchers and professionals working in the field of metal-organic frameworks and related disciplines.
Downloads
References
Adil, K., Belmabkhout, Y., Pillai, R.S., Cadiau, A., Bhatt, P.M., Assen, A.H., Maurin, G. and Eddaoudi, M., 2017. Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chemical Society Reviews, 46(11), pp.3402-3430.
Abdelhamid, H. N. (2020). A review on MOFs and their composites in water treatment. Arabian Journal of Chemistry, 13(9), 3350–3372.
Adil, K., Belmabkhout, Y., Pillai, R. S., Cadiau, A., Bhatt, P. M., Assen, A. H., ... Eddaoudi, M. (2017). Gas/vapor separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship. Accounts of Chemical Research, 50(4), 986–994.
Ahmad, R., Kumar, R., & Alhokbany, N. (2021). Copper-based metal-organic frameworks (Cu-MOFs) for environmental remediation: progress and perspectives. Environmental Research, 200, 111300.
Al-Maythalony, B. A., Belmabkhout, Y., Serna-Guerrero, R., & Eddaoudi, M. (2015). Porous materials in sensing and medical applications. Chemical Engineering Journal, 281, 345–356.
Ananthakrishnan, N., Saini, N., & Mehta, A. (2022). Mechanochemical synthesis of advanced Cu-MOFs for efficient photocatalysis. ACS Omega, 7(32), 28493–28502.
Bae, Y.-S., & Snurr, R. Q. (2011). Development and evaluation of porous materials for carbon dioxide separation and capture. Angewandte Chemie International Edition, 50(49), 11586–11596.
Banerjee, R., Phan, A., Sakamoto, H., Wang, B., Knobler, C., Furukawa, H., ... Yaghi, O. M. (2008). High-throughput synthesis of zeolitic imidazolate frameworks and application to CO₂ capture. Science, 319(5865), 939–943.
Bhimani, M., Karamthulla, S., & Ghosh, U. (2021). Sonochemical approach for Cu-based MOF catalysts in aerobic oxidation reactions. Ultrasonics Sonochemistry, 80, 105789.
Bordiga, S., Regli, L., Paze, C., Salvalaggio, M., Damin, A., Lamberti, C., ... Zecchina, A. (2005). Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR. Physical Chemistry Chemical Physics, 7(9), 164–170.
Cai, G., Liu, S., & Jiang, H.-L. (2017). Metal-organic framework-based hierarchically porous materials: synthesis and applications. Chemical Science, 8(1), 160–167.
Canivet, J., Vandichel, M., & Farrusseng, D. (2016). Origin of highly active metal-organic framework catalysts: defects? Defects! Dalton Transactions, 45(10), 4090–4099.
Chandra, R., & Roy, A. (2020). Green synthesis of Cu-MOFs using plant extracts: a sustainable approach for environmental remediation. Green Chemistry Letters and Reviews, 13(4), 275–286.
Chen, J., Tsumori, N., Kubota, Y., Kobayashi, T., & Kitagawa, S. (2010). Direct observation of gas adsorption sites and phase transformation in a flexible porous coordination polymer. Journal of the American Chemical Society, 132(16), 5588–5589.
Chen, Y., Lykourinou, V., Hoang, T., Ming, L. J., Ma, S., & Liang, Z. (2012). Zeolitic imidazolate framework-8 for the capture of trace phosphate. Journal of Materials Chemistry, 22(10), 5006–5012.
Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G., & Williams, I. D. (1999). A chemically functionalizable nanoporous material [Cu₃(TMA)₂(H₂O)₃]n. Science, 283(5405), 1148–1150.
Corma, A., Garcia, H., & Llabrés i Xamena, F. X. (2010). Engineering metal organic frameworks for heterogeneous catalysis. Chemical Reviews, 110(8), 4606–4655.
Cui, Y., Yue, Y., Qian, G., & Chen, B. (2012). Luminescent functional metal-organic frameworks. Chemical Reviews, 112(2), 1126–1162.
Dai, L., Chen, C., Li, J., & Jiang, F. (2019). A novel Cu-based MOF with flexible channels for efficient CO₂ capture. ACS Sustainable Chemistry & Engineering, 7(11), 9812–9821.
Dai, X., Wu, X., Zhang, Y., & Song, C. (2021). Advanced Cu-MOF architectures for electrocatalytic CO₂ reduction. Journal of Power Sources, 482, 228965.
Devic, T., & Serre, C. (2014). High valence 3p and 4p metal based MOFs. Chemical Society Reviews, 43(16), 6097–6115.
Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2019). Metal-organic frameworks catalyzed C–C and C–heteroatom coupling reactions. Coordination Chemistry Reviews, 403, 213062.
Doonan, C. J., Tranchemontagne, D., Glover, T. G., Fried, L. E., & Yaghi, O. M. (2010). Exceptional ammonia uptake by a covalent organic framework. Journal of the American Chemical Society, 132(32), 11461–11463.
Ebrahim, A. M., Rabie, A. M., & Elbasuney, S. (2020). Cu-MOF for catalytic decomposition of hazardous materials: synthesis, characterization, and mechanism. Inorganic Chemistry Communications, 120, 108154.
Fathima, N. N., & Pillai, R. S. (2021). Cu-MOF-based nanostructures for antibacterial applications: an overview. Colloids and Surfaces B: Biointerfaces, 205, 111874.
Feng, D., Wang, K., & Su, J. (2014). A highly stable zeotype mesoporous zirconium metal-organic framework with 12-connected nodes. Nature Communications, 5, 5723.
Feng, L., & Zhou, H.-C. (2012). Catalysts or carriers? The well-defined role of metal-organic frameworks in heterogeneous catalysis. Chemical Reviews, 112(2), 481–483.
Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The chemistry and applications of metal-organic frameworks. Science, 341(6149), 1230444.
Gao, W., & Wu, H. (2021). Construction of Cu-MOF thin films for advanced sensors. Sensors and Actuators B: Chemical, 343, 130143.
Gelfand, B. S., Hu, Z., & Tsapatsis, M. (2015). Bimetallic metal-organic frameworks for improved hydrothermal stability and gas separation. Chemical Communications, 51(22), 4368–4371.
Gimeno-Fabra, M., Shiko, E., Reynolds, K., & Cheetham, A. K. (2016). Mechanical properties of metal-organic frameworks: influence of structure and chemical bonding. Journal of Materials Chemistry A, 4(8), 3459–3466.
Goggins, E., Konecny, R., Rieger, B., & Reiter, G. (2022). Cu-MOFs in polymer composites for advanced catalytic applications. Macromolecules, 55(12), 4637–4650.
Guo, X., Wang, H., & Zhao, Y. (2021). Functionalization of Cu-MOFs for boosting hydrogen evolution reactions. Journal of Catalysis, 394, 122–131.
He, Y., Zhou, W., Qian, G., & Chen, B. (2014). Methane storage in metal-organic frameworks. Chemical Society Reviews, 43(16), 5657–5678.
Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebban, M., Taulelle, F., & Ferey, G. (2010). Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Materials, 9(2), 172–178.
Hu, P., Zhu, Y., & Xu, J. (2019). A Cu-based MOF with enhanced photocatalytic activity under visible-light irradiation. Applied Catalysis B: Environmental, 257, 117929.
Huang, N., Wang, P., & Jiang, D. (2020). Covalent organic frameworks: a materials platform for structural and functional designs. Nature Reviews Materials, 5(10), 809–821.
Huo, J., Marcello, M., Garai, B., & Bradshaw, D. (2013). From MOF to COF: the importance of metal-organic frameworks and covalent-organic frameworks in materials chemistry. Polyhedron, 75, 1–10.
Jiang, H.-L., & Xu, Q. (2011). Porous metal-organic frameworks as platforms for functional applications. Chemical Communications, 47(13), 3351–3370.
Kalidindi, S. B., Nayak, S., Briggs, B. R., & Brechin, E. K. (2019). Magnetically active copper-based MOFs with tunable spin transitions. Inorganic Chemistry, 58(14), 9350–9359.
Kandiah, M., Usseglio, S., Larson, S., & Stock, N. (2011). Large-scale synthesis of MOFs and their industrial applications. Journal of Materials Chemistry, 21(35), 17932–17938.
Kaskel, S. (2020). The chemistry of metal-organic frameworks: synthesis, characterization, and applications. Wiley-VCH.
Kavoosi, M., & Shariatinia, Z. (2019). Facile mechanochemical synthesis of Cu-MOFs for improved photocatalytic performance. Molecular Catalysis, 479, 110637.
Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P., & Hupp, J. T. (2012). Metal-organic framework materials as chemical sensors. Chemical Reviews, 112(2), 1105–1125.
Kumar, P., Deep, A., & Kim, K.-H. (2015). Metal organic frameworks for sensing applications. TrAC Trends in Analytical Chemistry, 73, 39–53.
Kumar, V., Garg, N., & Bera, C. (2021). Synthesis of bimetallic Cu/Fe-MOFs for efficient tetracycline removal. Chemical Engineering Journal, 421, 129916.
Li, J.-R., Kuppler, R. J., & Zhou, H.-C. (2012). Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews, 38(5), 1477–1504.
Li, S., Huang, Y., & Peng, X. (2020). Cu-MOF-based platforms for dual-mode sensing of heavy metals. Analytical Chemistry, 92(6), 4003–4010.
Li, Z., Han, X., Xie, X., & Sun, L.-B. (2020). Engineering metal-organic frameworks for catalytic applications: from linker design to post-synthetic modifications. ACS Catalysis, 10(6), 3863–3890.
Lin, W., & Rosi, N. L. (2016). Emerging strategies in bioinspired metal-organic frameworks. Accounts of Chemical Research, 49(8), 1511–1519.
Liu, B., Qiu, J., & Hu, K. (2022). Hierarchical Cu-MOF/graphene composites for high-performance electrocatalytic applications. Chemical Engineering Journal, 442, 136231.
Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chemical Society Reviews, 43(16), 6011–6061.
Liu, Q., & Gong, C. (2017). Copper-based metal-organic frameworks for advanced oxidation processes in wastewater treatment. Environmental Science & Technology, 51(24), 14666–14672.
Lustig, W. P., & Li, J. (2018). Luminescent metal-organic frameworks and coordination polymers as alternative phosphors for energy efficient lighting devices. Coordination Chemistry Reviews, 373, 116–147.
Ma, S., & Zhou, H.-C. (2010). Gas storage in porous metal-organic frameworks for clean energy applications. Chemical Communications, 46(1), 44–53.
Ma, X., Wang, Q., & Li, Y. (2022). Ultra-stable Cu-based MOFs with post-synthetic modifications for CO₂ capture. Journal of Materials Chemistry A, 10(35), 18547–18559.
Manna, K., Ji, P., & Lin, W. (2016). Metal-organic frameworks for enantioselective catalysis. Chemical Reviews, 116(14), 8649–8685.
Marinescu, G., & Weiss, H. (2020). Copper coordination polymers and metal-organic frameworks for catalytic applications. Catalysis Today, 354, 30–38.
Marti, A. M., & Kim, H. (2021). Cu-MOF nanocarriers for targeted anticancer drug delivery. ACS Applied Bio Materials, 4(7), 5678–5687.
Mason, J. A., Veenstra, M., & Long, J. R. (2014). Evaluating metal-organic frameworks for natural gas storage. Chemical Science, 5(1), 32–51.
Ming, W., Zhao, J., & Wang, C. (2020). Cu-MOF nanosheets with enhanced photocatalytic H₂ production. Applied Catalysis B: Environmental, 265, 118595.
Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K., & Pastre, J. (2006). Metal-organic frameworks—prospective industrial applications. Journal of Materials Chemistry, 16(7), 626–636.
Muñoz, M., & Zepeda, T. (2019). Green synthesis of copper-based MOFs using eco-friendly solvents. Journal of Environmental Chemical Engineering, 7(6), 103381.
Pan, Y., Liu, Y., Zeng, G., Zhao, L., Lai, Z., & Wei, H. (2017). Rapid synthesis of Cu-MOF for efficient removal of organic dyes from aqueous solutions. Chemical Engineering Journal, 327, 953–962.
Peterson, G. W., Mahle, J. J., DeCoste, J. B., & Jones, C. P. (2018). MOFs for toxic chemical removal and sensing. Advanced Materials Interfaces, 5(2), 1700692.
Qin, J., Yuan, Y., & Wang, Z. (2021). Synergistic effect of bimetallic Cu/Zn-MOF for enhanced adsorptive removal of heavy metals. Separation and Purification Technology, 262, 118349.
Ravon, U., Boutin, A., Fuchs, A. H., & Neimark, A. V. (2010). Effect of the organic ligand on the breathing of metal-organic frameworks. Langmuir, 26(12), 8828–8834.
Rubio-Martinez, M., Avci-Camur, C., Thornton, A. W., Imaz, I., Maspoch, D., & Hill, M. R. (2017). New synthetic routes towards MOF production at scale. Chemical Society Reviews, 46(11), 3453–3480.
Saha, D., Pas, S., & Odom, S. (2019). CO₂ adsorption on copper-based metal-organic frameworks in the presence of water: a review. Energy & Fuels, 33(9), 9638–9660.
Sen, S., Reddy, B. V. S., & Bora, U. (2016). Green chemistry approaches to the synthesis of metal-organic frameworks. RSC Advances, 6(42), 42116–42124.
Sharma, U., Sharma, S., & Chandra, R. (2022). Recent progress in functionalizing Cu-MOFs for enhanced electrochemical applications. Journal of Materials Chemistry A, 10(5), 2570–2590.
Shekhah, O., Liu, J., Fischer, R. A., & Wöll, C. (2011). MOF thin films: existing and future applications. Chemical Society Reviews, 40(2), 1081–1106.
Sun, C., Liu, J., & Yang, Q. (2020). Fabrication of Cu-MOF thin films for advanced sensor and membrane applications. Advanced Functional Materials, 30(12), 1907789.
Tang, Q., & Wu, J. (2021). Copper metal-organic frameworks: from design to application in energy and environmental fields. Coordination Chemistry Reviews, 448, 214170.
Teo, N., & Chakraborty, A. (2018). Nano-scale Cu-MOFs for controlled drug delivery: insights into encapsulation and release mechanisms. Colloids and Surfaces B: Biointerfaces, 172, 555–563.
Valenzano, L., Civalleri, B., Chavan, S., Bordiga, S., Nilsen, M. H., Jakobsen, S., ... Lamberti, C. (2011). Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chemistry of Materials, 23(7), 1700–1718.
Wang, H., Zhang, L., Yang, B., & Liu, X. (2021). Recent progress in copper-based metal-organic frameworks: synthesis, properties, and applications. Coordination Chemistry Reviews, 432, 213740.
Wang, S., Li, Y., & Sun, L. (2018). Metal-organic frameworks for photocatalytic organic pollutant degradation. ChemSusChem, 11(22), 3572–3590.
Wu, M.-X., & Yang, Y.-W. (2017). Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Advanced Materials, 29(23), 1606134.
Xie, L. S., Skorupskii, G., & Dincă, M. (2020). Electrically conductive metal-organic frameworks. Chemical Reviews, 120(16), 8536–8580.
Zhu, Q.-L., & Xu, Q. (2019). Metal-organic framework composites. Chemical Society Reviews, 48(6), 1677–1695.*
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.