Copper Oxide Nanoparticles in Agri-Nanotechnology : Green Synthesis, Pathogen Targeting, and Regulatory Outlook

Authors

  • Vinod W. Patil Research Laboratory, Department of Botany, DSPM’S K. V. Pendharkar College of Arts, Science and Commerce (Autonomous) Dombivli (East) - 421 203, Maharashtra, India Author
  • Nilkanth S. Suryawanshi Research Laboratory, Department of Botany, DSPM’S K. V. Pendharkar College of Arts, Science and Commerce (Autonomous) Dombivli (East) - 421 203, Maharashtra, India Author

DOI:

https://doi.org/10.32628/IJSRST2512398

Keywords:

Copper oxide nanoparticles, Green synthesis, Phytopathogens, Plant immunity, Nanobiotechnology

Abstract

The increasing demand for eco-friendly and sustainable agricultural practices has driven interest in nanotechnology-based solutions, notably copper oxide nanoparticles (CuO NPs). This review comprehensively explores the plant-mediated synthesis, characterization, antimicrobial activity, and regulatory perspectives of CuO NPs with specific emphasis on their potential against phytopathogens. Green synthesis using medicinal and crop plant extracts offers a cost-effective and environmentally benign alternative to traditional chemical and physical methods, leveraging phytochemicals such as flavonoids, polyphenols, and alkaloids for reduction and stabilization. Characterization techniques including SEM, TEM, XRD, FTIR, UV-Vis, and DLS confirm the nanoparticles’ nanoscale morphology, crystallinity, and functional properties. CuO NPs demonstrate significant antimicrobial effects through disruption of microbial membranes and generation of reactive oxygen species (ROS), leading to DNA damage, enzymatic inhibition, and apoptosis in phytopathogens. In vitro evaluations using disc and well diffusion assays, and in vivo assessments in greenhouse and field trials, validate their effectiveness in managing diseases caused by Fusarium, Xanthomonas, and Botrytis species. Furthermore, CuO NPs may act as plant immunity stimulants by enhancing the expression of pathogenesis-related (PR) proteins and secondary metabolites. However, cytotoxicity and phytotoxicity studies reveal potential adverse effects on non-target plant species and beneficial soil microbiota, highlighting the need for precise dosing and risk evaluation. Regulatory frameworks by the EPA, EU, and Indian agencies remain fragmented, necessitating harmonized global standards. Future directions include smart nanobiotechnology integration through synergistic formulations with ZnO and Ag NPs, development of seed coatings and foliar sprays, and scalable green synthesis. Addressing challenges in commercial-scale production, cost-effectiveness, and safe disposal will be pivotal for mainstream agricultural adoption.

Downloads

Download data is not yet available.

References

Abbasirad, S., & Ghotbi-Ravandi, A. A. (2025). Toxicity of copper oxide nanoparticles in barley: induction of oxidative stress, hormonal imbalance, and systemic resistances. BMC Plant Biology 2025 25:1, 25(1), 1–16. https://doi.org/10.1186/S12870-025-06213-6

Abd-Elsalam, K. A. (2022). Copper-based nanomaterials: Next-generation agrochemicals: A note from the editor. Copper Nanostructures: Next-Generation of Agrochemicals for Sustainable Agroecosystems, 1–14. https://doi.org/10.1016/B978-0-12-823833-2.00002-7

Abdollahdokht, D., Gao, Y., Faramarz, S., Poustforoosh, A., Abbasi, M., Asadikaram, G., & Nematollahi, M. H. (2022). Conventional agrochemicals towards nano-biopesticides: an overview on recent advances. Chemical and Biological Technologies in Agriculture, 9(1), 1–19. https://doi.org/10.1186/S40538-021-00281-0/TABLES/4

Abdo, S. M., Youssef, A. M., El-Liethy, M. A., & Ali, G. H. (2023). Preparation of simple biodegradable, nontoxic, and antimicrobial PHB/PU/CuO bionanocomposites for safely use as bioplastic material packaging. Biomass Conversion and Biorefinery, 14(22), 28673–28683. https://doi.org/10.1007/S13399-022-03591-X/TABLES/3

Adeyemi, J. O., Oriola, A. O., Onwudiwe, D. C., & Oyedeji, A. O. (2022). Plant Extracts Mediated Metal-Based Nanoparticles: Synthesis and Biological Applications. In Biomolecules (Vol. 12, Issue 5). MDPI. https://doi.org/10.3390/biom12050627

Ahamed, M., Alhadlaq, H. A., Khan, M. A. M., Karuppiah, P., & Al-Dhabi, N. A. (2014). Synthesis, Characterization, and Antimicrobial Activity of Copper Oxide Nanoparticles. Journal of Nanomaterials, 2014(1), 637858. https://doi.org/10.1155/2014/637858

Ahmad, H., Venugopal, K., Bhat, A. H., Kavitha, K., Ramanan, A., Rajagopal, K., Srinivasan, R., & Manikandan, E. (2020). Enhanced Biosynthesis Synthesis of Copper Oxide Nanoparticles (CuO-NPs) for their Antifungal Activity Toxicity against Major Phyto-Pathogens of Apple Orchards. Pharmaceutical Research, 37(12). https://doi.org/10.1007/s11095-020-02966-x

Ahmad, N. M., Husaini Mohamed, A., Hasan, N. A., Zainal- Abidin, N., Zaini Nawahwi, M., & Mohamad Azzeme, A. (2024). Effect of optimisation variable and the role of plant extract in the synthesis of nanoparticles using plant-mediated synthesis approaches. Inorganic Chemistry Communications, 161, 111839. https://doi.org/10.1016/J.INOCHE.2023.111839

Ahmar, S., Mahmood, T., Fiaz, S., Mora-Poblete, F., Shafique, M. S., Chattha, M. S., & Jung, K. H. (2021). Advantage of Nanotechnology-Based Genome Editing System and Its Application in Crop Improvement. Frontiers in Plant Science, 12, 663849. https://doi.org/10.3389/FPLS.2021.663849/PDF

Akintelu, S. A., Folorunso, A. S., Folorunso, F. A., & Oyebamiji, A. K. (2020). Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon, 6(7), e04508. https://doi.org/10.1016/J.HELIYON.2020.E04508/ASSET/E239261F-8532-4BE4-BD48-B2BEDCA1907E/MAIN.ASSETS/GR3.JPG

Alam, O., Khan, S. U., Gul, S., Gul, H., & Ullah, I. (2024). Innovative Nanotechnology in CRISPR-Based Crop Genome Editing. Nanotechnology in the Life Sciences, Part F3986, 121–151. https://doi.org/10.1007/978-3-031-76000-6_6

Alhalili, Z. (2022). Green synthesis of copper oxide nanoparticles CuO NPs from Eucalyptus Globoulus leaf extract: Adsorption and design of experiments. Arabian Journal of Chemistry, 15(5), 103739. https://doi.org/10.1016/J.ARABJC.2022.103739

AlHarethi, A. A., Abdullah, Q. Y., AlJobory, H. J., Anam, A. R. M., Arafa, R. A., & Farroh, K. Y. (2024). Zinc oxide and copper oxide nanoparticles as a potential solution for controlling Phytophthora infestans, the late blight disease of potatoes. Discover Nano, 19(1), 1–18. https://doi.org/10.1186/S11671-024-04040-6/FIGURES/9

Ali, S. S., Al-Tohamy, R., Koutra, E., Moawad, M. S., Kornaros, M., Mustafa, A. M., Mahmoud, Y. A. G., Badr, A., Osman, M. E. H., Elsamahy, T., Jiao, H., & Sun, J. (2021). Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives. Science of The Total Environment, 792, 148359. https://doi.org/10.1016/J.SCITOTENV.2021.148359

Alizadeh, S. R., & Ebrahimzadeh, M. A. (2021). Characterization and Anticancer Activities of Green Synthesized CuO Nanoparticles, A Review. Anti-Cancer Agents in Medicinal Chemistry, 21(12), 1529–1543. https://doi.org/10.2174/1871520620666201029111532

Anandhavalli, N., Mol, B., Manikandan, S., Anusha, N., Ponnusami, V., & Rajan, K. S. (2015). Green synthesis of cupric oxide nanoparticles using water extract of Murrya koenigi and its photocatalytic activity. Asian Journal of Chemistry, 27(7), 2523–2526. https://doi.org/10.14233/ajchem.2015.17966

Ankamwar, B., Kirtiwar, S., & Shukla, A. C. (2020). Plant-Mediated Green Synthesis of Nanoparticles. In Advances in Pharmaceutical Biotechnology: Recent Progress and Future Applications (pp. 221–234). Springer, Singapore. https://doi.org/10.1007/978-981-15-2195-9_17

Antonio-Pérez, A., Fernando Durán-Armenta, L., Guadalupe Pérez-Loredo, M., Torres-Huerta, A. L., Velázquez, F., Emiliano Zapata S/N, A., Tráfico, E., Romero, N., & 54400, C. P. (2023). Biosynthesis of Copper Nanoparticles with Medicinal Plants Extracts: From Extraction Methods to Applications. Micromachines 2023, Vol. 14, Page 1882, 14(10), 1882. https://doi.org/10.3390/MI14101882

Applerot, G., Lellouche, J., Lipovsky, A., Nitzan, Y., Lubart, R., Gedanken, A., & Banin, E. (2012). Understanding the antibacterial mechanism of CuO nanoparticles: Revealing the route of induced oxidative stress. Small, 8(21), 3326–3337. https://doi.org/10.1002/smll.201200772

Arif, N., Yadav, V., Singh, S., Tripathi, D. K., Dubey, N. K., Chauhan, D. K., & Giorgetti, L. (2018). Interaction of Copper Oxide Nanoparticles With Plants: Uptake, Accumulation, and Toxicity. Nanomaterials in Plants, Algae, and Microorganisms, 1, 297–310. https://doi.org/10.1016/B978-0-12-811487-2.00013-X

Aroob, S., Carabineiro, S. A. C., Taj, M. B., Bibi, I., Raheel, A., Javed, T., Yahya, R., Alelwani, W., Verpoort, F., Kamwilaisak, K., Al-Farraj, S., & Sillanpää, M. (2023). Green Synthesis and Photocatalytic Dye Degradation Activity of CuO Nanoparticles. Catalysts, 13(3). https://doi.org/10.3390/catal13030502

Arsenov, D., Beljin, J., Jović, D., Maletić, S., Borišev, M., & Borišev, I. (2023). Nanomaterials as endorsed environmental remediation tools for the next generation: Eco-safety and sustainability. Journal of Geochemical Exploration, 253, 107283. https://doi.org/10.1016/J.GEXPLO.2023.107283

Aseel, D. G., Rabie, M., El-Far, A., & Abdelkhalek, A. (2024). Antiviral properties and molecular docking studies of eco-friendly biosynthesized copper oxide nanoparticles against alfalfa mosaic virus. BMC Plant Biology, 24(1), 1–16. https://doi.org/10.1186/S12870-024-05802-1/FIGURES/6

Ashraf, H., Anjum, T., Riaz, S., Ahmad, I. S., Irudayaraj, J., Javed, S., Qaiser, U., & Naseem, S. (2021). Inhibition mechanism of green-synthesized copper oxide nanoparticles from Cassia fistula towards Fusarium oxysporum by boosting growth and defense response in tomatoes. Environmental Science: Nano, 8(6), 1729–1748. https://doi.org/10.1039/D0EN01281E

Atha, D. H., Wang, H., Petersen, E. J., Cleveland, D., Holbrook, R. D., Jaruga, P., Dizdaroglu, M., Xing, B., & Nelson, B. C. (2012). Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environmental Science and Technology, 46(3), 1819–1827. https://doi.org/10.1021/es202660k

Athira, K., Gurrala, L., & Kumar, D. V. R. (2021). Biosurfactant-mediated biosynthesis of CuO nanoparticles and their antimicrobial activity. Applied Nanoscience (Switzerland), 11(4), 1447–1457. https://doi.org/10.1007/s13204-021-01766-y

Attou, L., Jaber, B., & Ez-Zahraouy, H. (2018). Effect of annealing temperature on structural, optical and photocatalytic properties of CuO nanoparticles. Mediterranean Journal of Chemistry, 7(5), 308–316. https://doi.org/10.13171/mjc751911261230la

Badawy, A. A., Abdelfattah, N. A. H., Salem, S. S., Awad, M. F., & Fouda, A. (2021). Efficacy Assessment of Biosynthesized Copper Oxide Nanoparticles (CuO-NPs) on Stored Grain Insects and Their Impacts on Morphological and Physiological Traits of Wheat (Triticum aestivum L.) Plant. Biology 2021, Vol. 10, Page 233, 10(3), 233. https://doi.org/10.3390/BIOLOGY10030233

Bahrulolum, H., Nooraei, S., Javanshir, N., Tarrahimofrad, H., Mirbagheri, V. S., Easton, A. J., & Ahmadian, G. (2021). Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. Journal of Nanobiotechnology 2021 19:1, 19(1), 1–26. https://doi.org/10.1186/S12951-021-00834-3

Bai, B., Saranya, S., Dheepaasri, V., Muniasamy, S., Alharbi, N. S., Selvaraj, B., Undal, V. S., & Gnanamangai, B. M. (2022). Biosynthesized copper oxide nanoparticles (CuO NPs) enhances the anti-biofilm efficacy against K. pneumoniae and S. aureus. Journal of King Saud University - Science, 34(6), 102120. https://doi.org/10.1016/J.JKSUS.2022.102120

Banerjee, S., Mazumder, S., Chatterjee, D., Bose, S., & Majee, S. B. (2022). Nanotechnology for cargo delivery with a special emphasis on pesticide, herbicide, and fertilizer. Nano-Enabled Agrochemicals in Agriculture, 105–144. https://doi.org/10.1016/B978-0-323-91009-5.00002-1

Barati, F., Hosseini, F., Ghadam, P., & Arab, S. S. (2024). Optimizing CuO nanoparticle synthesis via walnut green husk extract utilizing response surface methodology. Journal of Molecular Structure, 1316. https://doi.org/10.1016/j.molstruc.2024.139077

Ben Amor, M. L., Zeghdi, S., Laouini, S. E., Bouafia, A., & Meneceur, S. (2023). pH reaction effect on biosynthesis of CuO/Cu2O nanoparticles by Moringa oleifera leaves extracts for antioxidant activities. Inorganic and Nano-Metal Chemistry, 53(4), 437–447. https://doi.org/10.1080/24701556.2022.2077376

Bhattacharya, S., & Kundu, A. (2025). Ecotoxicological Footprint of Agricultural Nanoparticles: Balancing Productivity with Environmental Safety. 539–560. https://doi.org/10.1007/978-981-97-9922-0_25

Blinova, I., Ivask, A., Heinlaan, M., Mortimer, M., & Kahru, A. (2010). Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environmental Pollution, 158(1), 41–47. https://doi.org/10.1016/J.ENVPOL.2009.08.017

Burachevskaya, M., Minkina, T., Mandzhieva, S., Bauer, T., Nevidomskaya, D., Shuvaeva, V., Sushkova, S., Kizilkaya, R., Gülser, C., & Rajput, V. (2021). Transformation of copper oxide and copper oxide nanoparticles in the soil and their accumulation by Hordeum sativum. Environmental Geochemistry and Health, 43(4), 1655–1672. https://doi.org/10.1007/S10653-021-00857-7/METRICS

Carley, L. N., Panchagavi, R., Song, X., Davenport, S., Bergemann, C. M., McCumber, A. W., Gunsch, C. K., & Simonin, M. (2020). Long-Term Effects of Copper Nanopesticides on Soil and Sediment Community Diversity in Two Outdoor Mesocosm Experiments. Environmental Science and Technology, 54(14), 8878–8889. https://doi.org/10.1021/ACS.EST.0C00510/SUPPL_FILE/ES0C00510_SI_002.PDF

Chao, S. J., Huang, C. P., Lam, C. C., Hua, L. C., Chang, S. H., & Huang, C. (2021). Transformation of copper oxide nanoparticles as affected by ionic strength and its effects on the toxicity and bioaccumulation of copper in zebrafish embryo. Ecotoxicology and Environmental Safety, 225, 112759. https://doi.org/10.1016/J.ECOENV.2021.112759

Chen, J., Mao, S., Xu, Z., & Ding, W. (2019). Various antibacterial mechanisms of biosynthesized copper oxide nanoparticles against soilborne Ralstonia solanacearum. RSC Advances, 9(7), 3788–3799. https://doi.org/10.1039/C8RA09186B

Chen, N.-F., Liao, Y.-H., Lin, P.-Y., Chen, W.-F., Wen, Z.-H., Hsieh, S., Chen, C. :, Liao, N.-F. ;, Lin, Y.-H. ;, Chen, P.-Y. ;, Wen, W.-F. ;, & Hsieh, Z.-H. ; (2021). Investigation of the Characteristics and Antibacterial Activity of Polymer-Modified Copper Oxide Nanoparticles. International Journal of Molecular Sciences 2021, Vol. 22, Page 12913, 22(23), 12913. https://doi.org/10.3390/IJMS222312913

Cherian, T., Ali, K., Saquib, Q., Faisal, M., Wahab, R., & Musarrat, J. (2020). Cymbopogon citratus functionalized green synthesis of cuo-nanoparticles: Novel prospects as antibacterial and antibiofilm agents. Biomolecules, 10(2). https://doi.org/10.3390/biom10020169

Codex Alimentarius Commission Procedural Manual. (2024). https://doi.org/10.4060/CD2280EN

Cunningham, F. J., Goh, N. S., Demirer, G. S., Matos, J. L., & Landry, M. P. (2018). Nanoparticle-Mediated Delivery towards Advancing Plant Genetic Engineering. Trends in Biotechnology, 36(9), 882–897. https://doi.org/10.1016/J.TIBTECH.2018.03.009

Cuong, H. N., Pansambal, S., Ghotekar, S., Oza, R., Thanh Hai, N. T., Viet, N. M., & Nguyen, V. H. (2022). New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. Environmental Research, 203. https://doi.org/10.1016/j.envres.2021.111858

Da Costa, M. V. J., & Sharma, P. K. (2016). Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica, 54(1), 110–119. https://doi.org/10.1007/S11099-015-0167-5/METRICS

Das, S., & Pattanayak, S. (2020). Nanotechnological Approaches in Sustainable Agriculture and Plant Disease Management. In S. K. Das (Ed.), Organic Agriculture (pp. 13–30). IntechOpen. https://doi.org/10.5772/intechopen.89775

Deng, C., Wang, Y., Navarro, G., Sun, Y., Cota-Ruiz, K., Hernandez-Viezcas, J. A., Niu, G., Li, C., White, J. C., & Gardea-Torresdey, J. (2022). Copper oxide (CuO) nanoparticles affect yield, nutritional quality, and auxin associated gene expression in weedy and cultivated rice (Oryza sativa L.) grains. Science of The Total Environment, 810, 152260. https://doi.org/10.1016/J.SCITOTENV.2021.152260

Devasena, T., Iffath, B., Renjith Kumar, R., Muninathan, N., Baskaran, K., Srinivasan, T., & John, S. T. (2022). Insights on the Dynamics and Toxicity of Nanoparticles in Environmental Matrices. Bioinorganic Chemistry and Applications, 2022(1), 4348149. https://doi.org/10.1155/2022/4348149

Dimkpa, C. O., McLean, J. E., Britt, D. W., & Anderson, A. J. (2012). Bioactivity and Biomodification of Ag, ZnO, and CuO Nanoparticles with Relevance to Plant Performance in Agriculture. Https://Home.Liebertpub.Com/Ind, 8(6), 344–357. https://doi.org/10.1089/IND.2012.0028

El-Abeid, S. E., Ahmed, Y., Daròs, J. A., & Mohamed, M. A. (2020). Reduced Graphene Oxide Nanosheet-Decorated Copper Oxide Nanoparticles: A Potent Antifungal Nanocomposite against Fusarium Root Rot and Wilt Diseases of Tomato and Pepper Plants. Nanomaterials 2020, Vol. 10, Page 1001, 10(5), 1001. https://doi.org/10.3390/NANO10051001

El-Abeid, S. E., Mosa, M. A., El-Tabakh, M. A. M., Saleh, A. M., El-Khateeb, M. A., & Haridy, M. S. A. (2023). Antifungal activity of copper oxide nanoparticles derived from Zizyphus spina leaf extract against Fusarium root rot disease in tomato plants. Journal of Nanobiotechnology, 22(1). https://doi.org/10.1186/s12951-023-02281-8

El-Garhy, H. A. S., Elsisi, A. A., Mohamed, S. A., Morsy, O. M., Osman, G., & Abdel-Rahman, F. A. (2020). Transcriptomic changes in green bean pods against grey mould and white rot diseases via field application of chemical elicitor nanoparticles. IET Nanobiotechnology, 14(7), 574–583. https://doi.org/10.1049/IET-NBT.2020.0004

Elmer, W., Latorre-Roche, R. De, Pagano, L., Majumdar, S., Zuverza-Mena, N., Dimkpa, C., Gardea-Torresdey, J., & White, J. C. (2018). Effect of metalloid and metal oxide nanoparticles on fusarium wilt of watermelon. Plant Disease, 102(7), 1394–1401. https://doi.org/10.1094/PDIS-10-17-1621-RE/ASSET/IMAGES/LARGE/PDIS-10-17-1621-RE_F12-1528933464470.JPEG

El-Wahab, H. A., Alenezy, E. K., Omer, N., Abdelaziz, M. A., Jame, R., Alshareef, S. A., & Owda, M. E. (2024). Efficacy of zinc and copper oxide nanoparticles as heat and corrosion-resistant pigments in paint formulations. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-74345-0

Feigl, G. (2023). The impact of copper oxide nanoparticles on plant growth: a comprehensive review. In Journal of Plant Interactions (Vol. 18, Issue 1). Taylor and Francis Ltd. https://doi.org/10.1080/17429145.2023.2243098

Gaba, S., Rai, A. K., Varma, A., Prasad Ram, & Goel, A. (2022). Biocontrol potential of mycogenic copper oxide nanoparticles against Alternaria brassicae. Frontiers in Chemistry, 10. https://doi.org/10.3389/fchem.2022.966396

Gaba, S., Varma, A., & Goel, A. (2022). Protective and curative activity of biogenic copper oxide nanoparticles against Alternaria blight disease in oilseed crops: a review. Journal of Plant Diseases and Protection, 129(2), 215–229. https://doi.org/10.1007/S41348-021-00555-7/METRICS

Gebre, S. H. (2023). Bio-inspired Synthesis of Metal and Metal Oxide Nanoparticles: The Key Role of Phytochemicals. In Journal of Cluster Science (Vol. 34, Issue 2, pp. 665–704). Springer. https://doi.org/10.1007/s10876-022-02276-9

Gkanatsiou, C., Karamanoli, Menkissoglu-Spiroudi, U., & Dendrinou-Samara, C. (2019). Composition effect of Cu-based nanoparticles on phytopathogenic bacteria. Antibacterial studies and phytotoxicity evaluation. Polyhedron, 170, 395–403. https://doi.org/10.1016/J.POLY.2019.06.002

Gowtham, H. G., Shilpa, N., Singh, S. B., Aiyaz, M., Abhilash, M. R., Nataraj, K., Amruthesh, K. N., Ansari, M. A., Alomary, M. N., & Murali, M. (2024). Toxicological effects of nanoparticles in plants: Mechanisms involved at morphological, physiological, biochemical and molecular levels. Plant Physiology and Biochemistry, 210, 108604. https://doi.org/10.1016/J.PLAPHY.2024.108604

Guan, X., Gao, X., Avellan, A., Spielman-Sun, E., Xu, J., Laughton, S., Yun, J., Zhang, Y., Bland, G. D., Zhang, Y., Zhang, R., Wang, X., Casman, E. A., & Lowry, G. V. (2020). CuO Nanoparticles Alter the Rhizospheric Bacterial Community and Local Nitrogen Cycling for Wheat Grown in a Calcareous Soil. Environmental Science and Technology, 54(14), 8699–8709. https://doi.org/10.1021/ACS.EST.0C00036/SUPPL_FILE/ES0C00036_SI_001.PDF

Gudkov, S. V., Burmistrov, D. E., Fomina, P. A., Validov, S. Z., & Kozlov, V. A. (2024). Antibacterial Properties of Copper Oxide Nanoparticles (Review). International Journal of Molecular Sciences, 25(21), 11563. https://doi.org/10.3390/IJMS252111563/S1

Gupta, S., & Bharti, M. K. (2022). Nanowaste disposal and recycling. Nanomaterials Recycling, 109–123. https://doi.org/10.1016/B978-0-323-90982-2.00006-8

Hermida-Montero, L. A., Pariona, N., Mtz-Enriquez, A. I., Carrión, G., Paraguay-Delgado, F., & Rosas-Saito, G. (2019). Aqueous-phase synthesis of nanoparticles of copper/copper oxides and their antifungal effect against Fusarium oxysporum. Journal of Hazardous Materials, 380, 120850. https://doi.org/10.1016/J.JHAZMAT.2019.120850

Hernández-Díaz, J. A., Garza-García, J. J. O., Zamudio-Ojeda, A., León-Morales, J. M., López-Velázquez, J. C., & García-Morales, S. (2021a). Plant-mediated synthesis of nanoparticles and their antimicrobial activity against phytopathogens. Journal of the Science of Food and Agriculture, 101(4), 1270–1287. https://doi.org/10.1002/JSFA.10767

Hernández-Díaz, J. A., Garza-García, J. J. O., Zamudio-Ojeda, A., León-Morales, J. M., López-Velázquez, J. C., & García-Morales, S. (2021b). Plant-mediated synthesis of nanoparticles and their antimicrobial activity against phytopathogens. Journal of the Science of Food and Agriculture, 101(4), 1270–1287. https://doi.org/10.1002/JSFA.10767

He, X., Deng, H., Aker, W. G., & Hwang, H. (2019). Regulation and Safety of Nanotechnology in the Food and Agriculture Industry. Food Applications of Nanotechnology, 525–536. https://doi.org/10.1201/9780429297038-23

Hosseinzadeh, E., Foroumadi, A., & Firoozpour, L. (2023). What is the role of phytochemical compounds as capping agents for the inhibition of aggregation in the green synthesis of metal oxide nanoparticles? A DFT molecular level response. Inorganic Chemistry Communications, 147, 110243. https://doi.org/10.1016/J.INOCHE.2022.110243

Ijaz, M., Khan, F., Ahmed, T., Noman, M., Zulfiqar, F., Rizwan, M., Chen, J., H.M. Siddique, K., & Li, B. (2023). Nanobiotechnology to advance stress resilience in plants: Current opportunities and challenges. Materials Today Bio, 22, 100759. https://doi.org/10.1016/J.MTBIO.2023.100759

Inam, M., Attique, I., Zahra, M., Khan, A. K., Hahim, M., Hano, C., & Anjum, S. (2023). Metal oxide nanoparticles and plant secondary metabolism: unraveling the game-changer nano-elicitors. Plant Cell, Tissue and Organ Culture, 155(2), 327–344. https://doi.org/10.1007/S11240-023-02587-3/METRICS

Jadhav, V., Bhagare, A., Ali, I. H., Dhayagude, A., Lokhande, D., Aher, J., Jameel, M., & Dutta, M. (2022). Role of Moringa oleifera on Green Synthesis of Metal/Metal Oxide Nanomaterials. In Journal of Nanomaterials (Vol. 2022). Hindawi Limited. https://doi.org/10.1155/2022/2147393

Jeetkar, T. J., Khataokar, S. P., Indurkar, A. R., Pandit, A., & Nimbalkar, M. S. (2022). A review on plant-mediated synthesis of metallic nanoparticles and their applications. Advances in Natural Sciences: Nanoscience and Nanotechnology, 13(3), 033004. https://doi.org/10.1088/2043-6262/AC865D

Kah, M., Kookana, R. S., Gogos, A., & Bucheli, T. D. (2018). A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotechnology 2018 13:8, 13(8), 677–684. https://doi.org/10.1038/s41565-018-0131-1

Kamel, S. M., Elgobashy, S. F., Omara, R. I., Derbalah, A. S., Abdelfatah, M., El-Shaer, A., Al-Askar, A. A., Abdelkhalek, A., Abd-Elsalam, K. A., Essa, T., Kamran, M., & Elsharkawy, M. M. (2022). Antifungal Activity of Copper Oxide Nanoparticles against Root Rot Disease in Cucumber. Journal of Fungi 2022, Vol. 8, Page 911, 8(9), 911. https://doi.org/10.3390/JOF8090911

Karmous, I., Vaidya, S., Dimkpa, C., Zuverza-Mena, N., da Silva, W., Barroso, K. A., Milagres, J., Bharadwaj, A., Abdelraheem, W., White, J. C., & Elmer, W. H. (2023). Biologically synthesized zinc and copper oxide nanoparticles using Cannabis sativa L. enhance soybean (Glycine max) defense against fusarium virguliforme. Pesticide Biochemistry and Physiology, 194, 105486. https://doi.org/10.1016/J.PESTBP.2023.105486

Khairy, T., Amin, D. H., Salama, H. M., Elkholy, I. M. A., Elnakib, M., Gebreel, H. M., & Sayed, H. A. E. (2024). Antibacterial activity of green synthesized copper oxide nanoparticles against multidrug-resistant bacteria. Scientific Reports 2024 14:1, 14(1), 1–21. https://doi.org/10.1038/s41598-024-75147-0

Khan, M. F. ;, Khan, M. A., Faheem Khan, M., & Khan, M. A. (2023). Plant-Derived Metal Nanoparticles (PDMNPs): Synthesis, Characterization, and Oxidative Stress-Mediated Therapeutic Actions. Future Pharmacology 2023, Vol. 3, Pages 252-295, 3(1), 252–295. https://doi.org/10.3390/FUTUREPHARMACOL3010018

Kohatsu, M. Y., Lange, C. N., Pelegrino, M. T., Pieretti, J. C., Tortella, G., Rubilar, O., Batista, B. L., Seabra, A. B., & Jesus, T. A. de. (2021). Foliar spraying of biogenic CuO nanoparticles protects the defence system and photosynthetic pigments of lettuce (Lactuca sativa). Journal of Cleaner Production, 324, 129264. https://doi.org/10.1016/J.JCLEPRO.2021.129264

Kohatsu, M. Y., Pelegrino, M. T., Monteiro, L. R., Freire, B. M., Pereira, R. M., Fincheira, P., Rubilar, O., Tortella, G., Batista, B. L., de Jesus, T. A., Seabra, A. B., & Lange, C. N. (2021). Comparison of foliar spray and soil irrigation of biogenic CuO nanoparticles (NPs) on elemental uptake and accumulation in lettuce. Environmental Science and Pollution Research, 28(13), 16350–16367. https://doi.org/10.1007/S11356-020-12169-X/METRICS

Kong, M., Jing, H., Wang, F., Huang, H., Xu, H. L., Ma, C., Shen, Y., Elmer, W. H., & White, J. C. (2024). Effect of CuO Nanoparticle Size on Inhibition of Fusarium graminearum. ACS Agricultural Science and Technology. https://doi.org/10.1021/ACSAGSCITECH.4C00501/SUPPL_FILE/AS4C00501_SI_001.PDF

Krumova, E., Benkova, D., Stoyancheva, G., Dishliyska, V., Miteva-Staleva, J., Kostadinova, A., Ivanov, K., El-sayed, K., Staneva, G., & Elshoky, H. A. (2024). Exploring the mechanism underlying the antifungal activity of chitosan-based ZnO, CuO, and SiO2 nanocomposites as nanopesticides against Fusarium solani and Alternaria solani. International Journal of Biological Macromolecules, 268, 131702. https://doi.org/10.1016/J.IJBIOMAC.2024.131702

Kumari, M., Giri, V. P., Pandey, S., Kumar, M., Katiyar, R., Nautiyal, C. S., & Mishra, A. (2019). An insight into the mechanism of antifungal activity of biogenic nanoparticles than their chemical counterparts. Pesticide Biochemistry and Physiology, 157, 45–52. https://doi.org/10.1016/J.PESTBP.2019.03.005

Kumari, R., Suman, K., Karmakar, S., Mishra, V., Lakra, S. G., Saurav, G. K., & Mahto, B. K. (2023). Regulation and safety measures for nanotechnology-based agri-products. Frontiers in Genome Editing, 5, 1200987. https://doi.org/10.3389/FGEED.2023.1200987/PDF

Kumar, S. A., Inbanathan, S. S. R., Manikandan, A., Topare, N. S., Srinivasan, S., kumar, M. A., Mahmoud, M. H., Fouad, H., Ansari, A., & Priya, L. S. (2024). Green synthesis structural, morphological and sonocatalytic properties of CuO nanoparticles assisted by Camellia sinensis (Tea) extract. Industrial Crops and Products, 219, 118915. https://doi.org/10.1016/J.INDCROP.2024.118915

Lee, W.-M., An, Y.-J., Yoon, H., & Kweon, H.-S. (2008). Nanomaterials in the Environment. In Environmental Toxicology and Chemistry (Vol. 27, Issue 9). http://www.epa.

Lemke, P., Jünemann, L., & Moerschbacher, B. M. (2022). Synergistic Antimicrobial Activities of Chitosan Mixtures and Chitosan–Copper Combinations. International Journal of Molecular Sciences, 23(6), 3345. https://doi.org/10.3390/IJMS23063345/S1

Leonardi, M., Caruso, G. M., Carroccio, S. C., Boninelli, S., Curcuruto, G., Zimbone, M., Allegra, M., Torrisi, B., Ferlito, F., & Miritello, M. (2021). Smart nanocomposites of chitosan/alginate nanoparticles loaded with copper oxide as alternative nanofertilizers. Environmental Science: Nano, 8(1), 174–187. https://doi.org/10.1039/D0EN00797H

Letchumanan, D., Sok, S. P. M., Ibrahim, S., Nagoor, N. H., & Arshad, N. M. (2021). Plant-based biosynthesis of copper/copper oxide nanoparticles: An update on their applications in biomedicine, mechanisms, and toxicity. In Biomolecules (Vol. 11, Issue 4). MDPI AG. https://doi.org/10.3390/biom11040564

Li, T., Li, Y., Qin, P., Wei, G., & Chen, C. (2023). Comparing the inhibitory effects of CuO-rGO, CuO NPs, and CuCl2 on the oomycete Phytophthora sojae: insights from phenotypic and transcriptomic analyses. Environmental Science: Nano, 10(9), 2299–2311. https://doi.org/10.1039/D3EN00363A

Liu, P., Ren, Z., Ding, W., Kong, D., Hermanowicz, S. W., & Huang, Y. (2023). Comparative Environmental Impact Assessment of Copper-Based Nanopesticides and Conventional Pesticides. ACS Agricultural Science and Technology, 3(7), 593–600. https://doi.org/10.1021/ACSAGSCITECH.3C00118/SUPPL_FILE/AS3C00118_SI_001.PDF

Li, Y., Yang, D., & Cui, J. (2017). Graphene oxide loaded with copper oxide nanoparticles as an antibacterial agent against Pseudomonas syringae pv. tomato. RSC Advances, 7(62), 38853–38860. https://doi.org/10.1039/C7RA05520J

Ma, C., Borgatta, J., De La Torre-Roche, R., Zuverza-Mena, N., White, J. C., Hamers, R. J., & Elmer, W. H. (2019). Time-Dependent Transcriptional Response of Tomato (Solanum lycopersicum L.) to Cu Nanoparticle Exposure upon Infection with Fusarium oxysporum f. sp. lycopersici. ACS Sustainable Chemistry and Engineering, 7(11), 10064–10074. https://doi.org/10.1021/ACSSUSCHEMENG.9B01433/SUPPL_FILE/SC9B01433_SI_001.PDF

Malandrakis, A. A., Kavroulakis, N., & Chrysikopoulos, C. V. (2020). Synergy between Cu-NPs and fungicides against Botrytis cinerea. Science of the Total Environment, 703. https://doi.org/10.1016/j.scitotenv.2019.135557

Manna, I., & Bandyopadhyay, M. (2019). A review on the biotechnological aspects of utilizing engineered nanoparticles as delivery systems in plants. Plant Gene, 17, 100167. https://doi.org/10.1016/J.PLGENE.2018.100167

Manzoor, M. A., Shah, I. H., Ali Sabir, I., Ahmad, A., Albasher, G., Dar, A. A., Altaf, M. A., & Shakoor, A. (2023). Environmental sustainable: Biogenic copper oxide nanoparticles as nano-pesticides for investigating bioactivities against phytopathogens. Environmental Research, 231, 115941. https://doi.org/10.1016/J.ENVRES.2023.115941

Ma, T., Gong, S., & Tian, B. (2017). Effects of sediment-associated CuO nanoparticles on Cu bioaccumulation and oxidative stress responses in freshwater snail Bellamya aeruginosa. Science of The Total Environment, 580, 797–804. https://doi.org/10.1016/J.SCITOTENV.2016.12.026

Melanie, M., Miranti, M., Kasmara, H., Malini, D. M., Husodo, T., Panatarani, C., Joni, I. M., & Hermawan, W. (2022). Nanotechnology-Based Bioactive Antifeedant for Plant Protection. In Nanomaterials (Vol. 12, Issue 4). MDPI. https://doi.org/10.3390/nano12040630

Mendes Hacke, A. C., Lima, D., & Kuss, S. (2022). Green synthesis of electroactive nanomaterials by using plant-derived natural products. Journal of Electroanalytical Chemistry, 922, 116786. https://doi.org/10.1016/J.JELECHEM.2022.116786

Mishra, A. K., Das, R., Sahoo, S., & Biswal, B. (2022). Global regulations and legislations on nanoparticles usage and application in diverse horizons. Comprehensive Analytical Chemistry, 99, 261–290. https://doi.org/10.1016/BS.COAC.2021.12.004

Mishra, K. K., & Kumar, S. (2023). Biotic Stress Management of Crop Plants using Nanomaterials. CRC Press. https://books.google.co.in/books?id=SUe1EAAAQBAJ&dq=future+applications+of+cuo+nanoparticles+in+agriculture,+including+smart+nanobiotechnology,+nano-based+formulations,+and+industrial-scale+production&lr=&source=gbs_navlinks_s

Mittal, D., Kaur, G., Singh, P., Yadav, K., & Ali, S. A. (2020). Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook. In Frontiers in Nanotechnology (Vol. 2). Frontiers Media S.A. https://doi.org/10.3389/fnano.2020.579954

Moon, Y. S., Park, E. S., Kim, T. O., Lee, H. S., & Lee, S. E. (2014). SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles. Environmental Toxicology and Pharmacology, 38(3), 922–931. https://doi.org/10.1016/J.ETAP.2014.10.002

Moradian, F., Ghorbani, R., & Biparva, P. (2018). Assessment of Different Antibacterial Effects of Fe and Cu Nanoparticles on Xanthomonas campestris Growth and Expression of Its Pathogenic Gene hrpE. Journal of Agricultural Science and Technology, 20(5), 1059–1070. http://jast.modares.ac.ir/article-23-13273-en.html

Mosa, K. A., El-Naggar, M., Ramamoorthy, K., Alawadhi, H., Elnaggar, A., Wartanian, S., Ibrahim, E., & Hani, H. (2018). Copper nanoparticles induced genotoxicty, oxidative stress, and changes in superoxide dismutase (SOD) gene expression in cucumber (cucumis sativus) plants. Frontiers in Plant Science, 9, 365054. https://doi.org/10.3389/FPLS.2018.00872/BIBTEX

Mosa, M. A., & El-Abeid, S. E. (2023). Chitosan-Loaded Copper Oxide Nanoparticles: A Promising Antifungal Nanocomposite against Fusarium Wilt Disease of Tomato Plants. Sustainability 2023, Vol. 15, Page 14295, 15(19), 14295. https://doi.org/10.3390/SU151914295

Mubeen, B., Hasnain, A., Wang, J., Zheng, H., Naqvi, S. A. H., Prasad, R., Rehman, A. ur, Sohail, M. A., Hassan, M. Z., Farhan, M., Khan, M. A., & Moustafa, M. (2023). Current Progress and Open Challenges for Combined Toxic Effects of Manufactured Nano-Sized Objects (MNO’s) on Soil Biota and Microbial Community. Coatings 2023, Vol. 13, Page 212, 13(1), 212. https://doi.org/10.3390/COATINGS13010212

Mubeen, I., Fawzi Bani Mfarrej, M., Razaq, Z., Iqbal, S., Naqvi, S. A. H., Hakim, F., Mosa, W. F. A., Moustafa, M., Fang, Y., & Li, B. (2023). Nanopesticides in comparison with agrochemicals: Outlook and future prospects for sustainable agriculture. Plant Physiology and Biochemistry, 198, 107670. https://doi.org/10.1016/J.PLAPHY.2023.107670

Mukherjee, K., & Acharya, K. (2018). Toxicological Effect of Metal Oxide Nanoparticles on Soil and Aquatic Habitats. Archives of Environmental Contamination and Toxicology, 75(2), 175–186. https://doi.org/10.1007/S00244-018-0519-9/METRICS

Munir, Y., Gul, S., Iqbal Khan, M., & Bahadar Khan, S. (2024). Ecofriendly synthesis of copper oxide-chitosan nanocomposites and their efficacy as nano-pesticide and nano-fertilizer. Inorganic Chemistry Communications, 168, 112769. https://doi.org/10.1016/J.INOCHE.2024.112769

Nabila, M. I., & Kannabiran, K. (2018). Biosynthesis, characterization and antibacterial activity of copper oxide nanoparticles (CuO NPs) from actinomycetes. Biocatalysis and Agricultural Biotechnology, 15, 56–62. https://doi.org/10.1016/j.bcab.2018.05.011

Nagaraj, E., Karuppannan, K., Shanmugam, P., & Venugopal, S. (2019). Exploration of Bio-synthesized Copper Oxide Nanoparticles Using Pterolobium hexapetalum Leaf Extract by Photocatalytic Activity and Biological Evaluations. Journal of Cluster Science, 30(4), 1157–1168. https://doi.org/10.1007/s10876-019-01579-8

Nagore, P., Ghotekar, S., Mane, K., Ghoti, A., Bilal, M., & Roy, A. (2021). Structural Properties and Antimicrobial Activities of Polyalthia longifolia Leaf Extract-Mediated CuO Nanoparticles. BioNanoScience, 11(2), 579–589. https://doi.org/10.1007/s12668-021-00851-4

Nasrollahzadeh, M., Mahmoudi-Gom Yek, S., Motahharifar, N., & Ghafori Gorab, M. (2019). Recent Developments in the Plant-Mediated Green Synthesis of Ag-Based Nanoparticles for Environmental and Catalytic Applications. In Chemical Record (Vol. 19, Issue 12, pp. 2436–2479). John Wiley and Sons Inc. https://doi.org/10.1002/tcr.201800202

Nazir, S., Jan, H., Zaman, G., Khan, T., Ashraf, H., Meer, B., Zia, M., Drouet, S., Hano, C., & Abbasi, B. H. (2021). Copper oxide (CuO) and manganese oxide (MnO) nanoparticles induced biomass accumulation, antioxidants biosynthesis and abiotic elicitation of bioactive compounds in callus cultures of Ocimum basilicum (Thai basil). Artificial Cells, Nanomedicine, and Biotechnology, 49(1), 626–634. https://doi.org/10.1080/21691401.2021.1984935

Naz, S., Gul, A., Zia, M., & Javed, R. (2023). Synthesis, biomedical applications, and toxicity of CuO nanoparticles. Applied Microbiology and Biotechnology 2023 107:4, 107(4), 1039–1061. https://doi.org/10.1007/S00253-023-12364-Z

Parada, J., Tortella, G., Seabra, A. B., Fincheira, P., & Rubilar, O. (2024). Potential Antifungal Effect of Copper Oxide Nanoparticles Combined with Fungicides against Botrytis cinerea and Fusarium oxysporum. Antibiotics, 13(3), 215. https://doi.org/10.3390/ANTIBIOTICS13030215/S1

Pelegrino, M. T., Pieretti, J. C., Lange, C. N., Kohatsu, M. Y., Freire, B. M., Batista, B. L., Fincheira, P., Tortella, G. R., Rubilar, O., & Seabra, A. B. (2021). Foliar spray application of CuO nanoparticles (NPs) and S-nitrosoglutathione enhances productivity, physiological and biochemical parameters of lettuce plants. Journal of Chemical Technology & Biotechnology, 96(8), 2185–2196. https://doi.org/10.1002/JCTB.6677

Peng, C., Shen, C., Zheng, S., Yang, W., Hu, H., Liu, J., & Shi, J. (2017). Transformation of CuO Nanoparticles in the Aquatic Environment: Influence of pH, Electrolytes and Natural Organic Matter. Nanomaterials 2017, Vol. 7, Page 326, 7(10), 326. https://doi.org/10.3390/NANO7100326

Peng, C., Xu, C., Liu, Q., Sun, L., Luo, Y., & Shi, J. (2017). Fate and Transformation of CuO Nanoparticles in the Soil-Rice System during the Life Cycle of Rice Plants. Environmental Science and Technology, 51(9), 4907–4917. https://doi.org/10.1021/ACS.EST.6B05882/SUPPL_FILE/ES6B05882_SI_001.PDF

Pouthika, K., & Madhumitha, G. (2023). A review on plant-derived nanomaterials: an effective and innovative insect-resistant strategy for alternate pesticide development. International Journal of Environmental Science and Technology 2023 21:2, 21(2), 2239–2262. https://doi.org/10.1007/S13762-023-04998-3

Pramanik, P., Krishnan, P., Maity, A., Mridha, N., Mukherjee, A., & Rai, V. (2020). Application of Nanotechnology in Agriculture. 317–348. https://doi.org/10.1007/978-3-030-26668-4_9

Rajpal, V. R., Dhingra, Y., Khungar, L., Mehta, S., Minkina, T., Rajput, V. D., & Husen, A. (2024). Exploring metal and metal-oxide nanoparticles for nanosensing and biotic stress management in plant systems. In Current Research in Biotechnology (Vol. 7). Elsevier B.V. https://doi.org/10.1016/j.crbiot.2024.100219

Rajput, V., Minkina, T., Ahmed, B., Sushkova, S., Singh, R., Soldatov, M., Laratte, B., Fedorenko, A., Mandzhieva, S., Blicharska, E., Musarrat, J., Saquib, Q., Flieger, J., & Gorovtsov, A. (2019). Interaction of Copper-Based Nanoparticles to Soil, Terrestrial, and Aquatic Systems: Critical Review of the State of the Science and Future Perspectives. Reviews of Environmental Contamination and Toxicology, 252, 51–96. https://doi.org/10.1007/398_2019_34

Ramesh, A. V., Devi, D. R., Battu, G. R., & Basavaiah, K. (2018). A Facile plant mediated synthesis of silver nanoparticles using an aqueous leaf extract of Ficus hispida Linn. f. for catalytic, antioxidant and antibacterial applications. South African Journal of Chemical Engineering, 26, 25–34. https://doi.org/10.1016/J.SAJCE.2018.07.001

Rani, N., Singh, P., Kumar, S., Kumar, P., Bhankar, V., & Kumar, K. (2023). Plant-mediated synthesis of nanoparticles and their applications: A review. Materials Research Bulletin, 163, 112233. https://doi.org/10.1016/J.MATERRESBULL.2023.112233

Rawat, R., Kashyap, A., Ivane, L., Sharma, P., & Gupta, P. (2024). Comparative analysis of the antimicrobial activity of copper and copper oxide nanoparticles against Botrytis cinerea. Https://Wjarr.Co.in/Sites/Default/Files/WJARR-2024-1622.Pdf, 22(3), 043–048. https://doi.org/10.30574/WJARR.2024.22.3.1622

Rotini, A., Gallo, A., Parlapiano, I., Berducci, M. T., Boni, R., Tosti, E., Prato, E., Maggi, C., Cicero, A. M., Migliore, L., & Manfra, L. (2018). Insights into the CuO nanoparticle ecotoxicity with suitable marine model species. Ecotoxicology and Environmental Safety, 147, 852–860. https://doi.org/10.1016/J.ECOENV.2017.09.053

Saini, N., Pandey, P., & Kulkarni, A. (2022). Callus-Derived Bioactive Nanomaterials for Sustainable Drug Delivery. In Innovations in Green Nanoscience and Nanotechnology (First, pp. 133–146). CRC Press. https://doi.org/10.1201/9781003319153-9

Saleem, M. H., Ejaz, U., Vithanage, M., Bolan, N., & Siddique, K. H. M. (2024). Synthesis, characterization, and advanced sustainable applications of copper oxide nanoparticles: a review. Clean Technologies and Environmental Policy 2024, 1–26. https://doi.org/10.1007/S10098-024-02774-6

Sampaio, S., & Viana, J. C. (2021). Optimisation of the green synthesis of Cu/Cu2O particles for maximum yield production and reduced oxidation for electronic applications. Materials Science and Engineering: B, 263. https://doi.org/10.1016/j.mseb.2020.114807

Santana, I., Wu, H., Hu, P., & Giraldo, J. P. (2020). Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nature Communications 2020 11:1, 11(1), 1–12. https://doi.org/10.1038/s41467-020-15731-w

Sarfraz, M. H., Zubair, M., Aslam, B., Ashraf, A., Siddique, M. H., Hayat, S., Cruz, J. N., Muzammil, S., Khurshid, M., Sarfraz, M. F., Hashem, A., Dawoud, T. M., Avila-Quezada, G. D., & Abd_Allah, E. F. (2023). Comparative analysis of phyto-fabricated chitosan, copper oxide, and chitosan-based CuO nanoparticles: antibacterial potential against Acinetobacter baumannii isolates and anticancer activity against HepG2 cell lines. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1188743

Selvanathan, V., Aminuzzaman, M., Tey, L. H., Razali, S. A., Althubeiti, K., Alkhammash, H. I., Guha, S. K., Ogawa, S., Watanabe, A., Shahiduzzaman, M., & Akhtaruzzaman, M. (2021). Muntingia calabura leaves mediated green synthesis of cuo nanorods: Exploiting phytochemicals for unique morphology. Materials, 14(21). https://doi.org/10.3390/ma14216379

Sharma, S., Kumar, K., Thakur, N., Chauhan, S., & Chauhan, M. S. (2021). Eco-friendly Ocimum tenuiflorum green route synthesis of CuO nanoparticles: Characterizations on photocatalytic and antibacterial activities. Journal of Environmental Chemical Engineering, 9(4). https://doi.org/10.1016/j.jece.2021.105395

Shehabeldine, A. M., Amin, B. H., Hagras, F. A., Ramadan, A. A., Kamel, M. R., Ahmed, M. A., Atia, K. H., & Salem, S. S. (2023). Potential Antimicrobial and Antibiofilm Properties of Copper Oxide Nanoparticles: Time-Kill Kinetic Essay and Ultrastructure of Pathogenic Bacterial Cells. Applied Biochemistry and Biotechnology, 195(1), 467–485. https://doi.org/10.1007/S12010-022-04120-2/FIGURES/8

Siddiqui, H., Parra, M. R., & Haque, F. Z. (2018). Optimization of process parameters and its effect on structure and morphology of CuO nanoparticle synthesized via the sol−gel technique. Journal of Sol-Gel Science and Technology, 87(1), 125–135. https://doi.org/10.1007/s10971-018-4663-5

Singh, A., Rajput, V. D., Ghazaryan, K., Sharma, A., Minkina, T. M., Abdel Rahman Mohammad Al-Tawaha, Alexiou, A. T., & Rajput, P. (2024). Nanotechnology-based genome editing: empowering sustainable agriculture for enhanced food security. In V. D. Rajput, A. Singh, K. Ghazaryan, T. M. Minkina, & Abdel Rahman Mohammad Al-Tawaha (Eds.), Sustainable Agriculture: Nanotechnology, Biotechnology, Management and Food Security (Illustrated, pp. 173–190). Walter de Gruyter GmbH & Co KG. https://doi.org/10.1515/9783111369754-008

Singh, R., & Kumar, S. (2023). Nanotechnology Advancement in Agro-Food Industry. Springer Nature. https://books.google.co.in/books?hl=en&lr=&id=cvPSEAAAQBAJ&oi=fnd&pg=PR6&dq=future+applications+of+cuo+nanoparticles+in+agriculture,+including+smart+nanobiotechnology,+nano-based+formulations,+and+industrial-scale+production&ots=fz-M64F_BR&sig=xA0UGbDAVboJQ0X7Hh0xdf5yWvk&redir_esc=y#v=onepage&q&f=false

Sofiah, A. G. N., Samykano, M., Shahabuddin, S., Pandey, A. K., Kadirgama, K., Said, Z., & Sudhakar, K. (2022). Copper (II) oxide nanoparticles as additives in RBD palm olein: Experimental analysis and mathematical modelling. Journal of Molecular Liquids, 363, 119892. https://doi.org/10.1016/J.MOLLIQ.2022.119892

Tamaekong, N., Liewhiran, C., & Phanichphant, S. (2014). Synthesis of thermally spherical CuO nanoparticles. Journal of Nanomaterials, 2014. https://doi.org/10.1155/2014/507978

Tamil Elakkiya, V., Meenakshi, R. V., Senthil Kumar, P., Karthik, V., Ravi Shankar, K., Sureshkumar, P., & Hanan, A. (2022). Green synthesis of copper nanoparticles using Sesbania aculeata to enhance the plant growth and antimicrobial activities. International Journal of Environmental Science and Technology, 19(3), 1313–1322. https://doi.org/10.1007/s13762-021-03182-9

Tang, Y., He, R., Zhao, J., Nie, G., Xu, L., & Xing, B. (2016). Oxidative stress-induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Environmental Pollution, 212, 605–614. https://doi.org/10.1016/J.ENVPOL.2016.03.019

Valdes, C., Cota-Ruiz, K., Flores, K., Ye, Y., Hernandez-Viezcas, J. A., & Gardea-Torresdey, J. L. (2020). Antioxidant and defense genetic expressions in corn at early-developmental stage are differentially modulated by copper form exposure (nano, bulk, ionic): Nutrient and physiological effects. Ecotoxicology and Environmental Safety, 206, 111197. https://doi.org/10.1016/J.ECOENV.2020.111197

Varympopi, A., Dimopoulou, A., Papafotis, D., Avramidis, P., Sarris, I., Karamanidou, T., Kerou, A. K., Vlachou, A., Vellis, E., Giannopoulos, A., Haralampidis, K., Theologidis, I., Hatzinikolaou, D. G., Tsouknidas, A., & Skandalis, N. (2022). Antibacterial Activity of Copper Nanoparticles against Xanthomonas campestris pv. vesicatoria, Causing Leaf Spot on Tomato. International Journal of Molecular Sciences, 23(8), 4080. https://doi.org/10.3390/IJMS23084080/S1

Varympopi, A., Dimopoulou, A., Theologidis, I., Karamanidou, T., Kerou, A. K., Vlachou, A., Karfaridis, D., Papafotis, D., Hatzinikolaou, D. G., Tsouknidas, A., & Skandalis, N. (2020). Bactericides Based on Copper Nanoparticles Restrain Growth of Important Plant Pathogens. Pathogens 2020, Vol. 9, Page 1024, 9(12), 1024. https://doi.org/10.3390/PATHOGENS9121024

Velicogna, J. R., Schwertfeger, D., Jesmer, A., Beer, C., Kuo, J., DeRosa, M. C., Scroggins, R., Smith, M., & Princz, J. (2021). Soil invertebrate toxicity and bioaccumulation of nano copper oxide and copper sulphate in soils, with and without biosolids amendment. Ecotoxicology and Environmental Safety, 217, 112222. https://doi.org/10.1016/J.ECOENV.2021.112222

Velsankar, K., Aswin Kumara, R. M., Preethi, R., Muthulakshmi, V., & Sudhahar, S. (2020). Green synthesis of CuO nanoparticles via Allium sativum extract and its characterizations on antimicrobial, antioxidant, antilarvicidal activities. Journal of Environmental Chemical Engineering, 8(5). https://doi.org/10.1016/j.jece.2020.104123

Venugopal, E., Krishna, S. B. N., Golla, N., & Patil, S. J. (2024). Nanofungicides: A Promising Solution for Climate-Resilient Plant Disease Management. Plant Quarantine Challenges under Climate Change Anxiety, 513–532. https://doi.org/10.1007/978-3-031-56011-8_16

Wahab, A., Muhammad, M., Ullah, S., Abdi, G., Shah, G. M., Zaman, W., & Ayaz, A. (2024). Agriculture and environmental management through nanotechnology: Eco-friendly nanomaterial synthesis for soil-plant systems, food safety, and sustainability. Science of The Total Environment, 926, 171862. https://doi.org/10.1016/J.SCITOTENV.2024.171862

Wahab, S., Ahmad, Md. P., Hussain, A., & Qadir, S. F. A. (2021). Nanomaterials for the Delivery of Herbal Bioactive Compounds. Current Nanoscience, 18(4), 425–441. https://doi.org/10.2174/1573413717666211004090341/CITE/REFWORKS

Wang, J. W., Cunningham, F. J., Goh, N. S., Boozarpour, N. N., Pham, M., & Landry, M. P. (2021). Nanoparticles for protein delivery in planta. Current Opinion in Plant Biology, 60, 102052. https://doi.org/10.1016/J.PBI.2021.102052

Xu, W., Shu, M., Yuan, C., Dumat, C., Zhang, J., Zhang, H., & Xiong, T. (2024). Lettuce (Lactuca sativa L.) alters its metabolite accumulation to cope with CuO nanoparticles by promoting antioxidant production and carbon metabolism. Environmental Geochemistry and Health, 46(10), 1–20. https://doi.org/10.1007/S10653-024-02160-7/METRICS

Xu, Z., Tang, T., Lin, Q., Yu, J., Zhang, C., Zhao, X., Kah, M., & Li, L. (2022). Environmental risks and the potential benefits of nanopesticides: a review. Environmental Chemistry Letters, 20(3), 2097–2108. https://doi.org/10.1007/S10311-021-01338-0/METRICS

Yadav, A., & Yadav, K. (2018). Nanoparticle-Based Plant Disease Management: Tools for Sustainable Agriculture. In Nanotechnology in the Life Sciences (pp. 29–61). Springer Science and Business Media B.V. https://doi.org/10.1007/978-3-319-91161-8_2

Yang, L., Chen, H., Zhu, S., Zhao, S., Huang, S., Cheng, D., Xu, H., & Zhang, Z. (2024). Pectin-Coated Iron-Based Metal-Organic Framework Nanoparticles for Enhanced Foliar Adhesion and Targeted Delivery of Fungicides. ACS Nano, 18(8), 6533–6549. https://doi.org/10.1021/ACSNANO.3C12352/SUPPL_FILE/NN3C12352_SI_001.PDF

Zahra, Z., Habib, Z., Hyun, S., & Sajid, M. (2022). Nanowaste: Another Future Waste, Its Sources, Release Mechanism, and Removal Strategies in the Environment. Sustainability 2022, Vol. 14, Page 2041, 14(4), 2041. https://doi.org/10.3390/SU14042041

Zhao, X., Fan, X., Gong, Z., Gao, X., Wang, Y., & Ni, B. (2023). The Toxic Effects of Cu and CuO Nanoparticles on Euplotes aediculatus. Microbial Ecology, 85(2), 544–556. https://doi.org/10.1007/S00248-022-01972-3/METRICS

Downloads

Published

01-06-2025

Issue

Section

Research Articles