Determination of Antimicrobial Effects of Dihydropyrano [2, 3-c] Pyrazole Derivatives Catalysed by MnFe₂O₄
DOI:
https://doi.org/10.32628/IJSRST251264Keywords:
manganese ferric oxide, nanocatalyst, dihydropyrano[2,3-c] pyrazole, antibacterial activity, antifungal activityAbstract
A recent study discovered antibacterial and antifungal compounds, highlighting their potential future importance in medicinal chemistry. The some Selected derivatives of dihydropyrano[2, 3-c]pyrazoles motif i.e. 6-amino-1,4-dihydro-3-methyl-4-(4-nitrophenyl)-1-phenylpyrano[2,3-c] pyrazole-5-carbonitrile shows excellent bacterial activity against Klebsiella pneumoniae and 6-amino-1,4-dihydro-4-(2,5-dimethoxyphenyl)-3-methyl -1-phenylpyrano[2,3-c]pyrazole-5-carbonitrile against Salmonella enterica serovar Typhimurium, whereas 6-amino-1,4-dihydro-4-(2-hydroxyphenyl)-3-methyl-1-phenylpyrano[2,3-c]pyrazole-5-carbonitrile shows best antifungal activity against Candida albicans.
📊 Article Downloads
References
A. Matin, N. Gavande, M.S. Kim, N.X. Yang, N.K. Salam, J.R. Hanrahan, R.H. Roubin, D.E. Hibbs, 7-Hydroxy-benzopyran-4-one derivatives: A novel pharmacophore of peroxisome proliferator-activated receptor α and-γ (PPARα and γ) dual agonists, J. Med. Chem. 52 (2009) 6835–6850. https://doi.org/10.1021/jm900964r. DOI: https://doi.org/10.1021/jm900964r
E.-M. Priego, J. von Frijtag Drabbe Kuenzel, A.P. IJzerman, M.-J. Camarasa, M.-J. Pérez-Pérez, Pyrido [2, 1-f] purine-2, 4-dione derivatives as a novel class of highly potent human A3 adenosine receptor antagonists, J. Med. Chem. 45 (2002) 3337–3344. https://doi.org/10.1021/jm0208469. DOI: https://doi.org/10.1021/jm0208469
A. V Stachulski, N.G. Berry, A.C. Lilian Low, S.L. Moores, E. Row, D.C. Warhurst, I.S. Adagu, J.-F. Rossignol, Identification of isoflavone derivatives as effective anticryptosporidial agents in vitro and in vivo, J. Med. Chem. 49 (2006) 1450–1454. https://doi.org/10.1021/jm050973f. DOI: https://doi.org/10.1021/jm050973f
P.W. Smith, S.L. Sollis, P.D. Howes, P.C. Cherry, I.D. Starkey, K.N. Cobley, H. Weston, J. Scicinski, A. Merritt, A. Whittington, Dihydropyrancarboxamides related to zanamivir: A new series of inhibitors of influenza virus sialidases. 1. Discovery, synthesis, biological activity, and structure− activity relationships of 4-guanidino-and 4-amino-4 H-pyran-6-carboxamides, J. Med. Chem. 41 (1998) 787–797. https://doi.org/10.1021/jm970374b. DOI: https://doi.org/10.1021/jm970374b
M.E.A. Zaki, H.A. Soliman, O.A. Hiekal, A.E. Rashad, Pyrazolopyranopyrimidines as a class of anti-inflammatory agents, Zeitschrift Für Naturforsch. C 61c (2006) 1–5. https://doi.org/10.1515/znc-2006-1-201. DOI: https://doi.org/10.1515/znc-2006-1-201
S.C. Kuo, L.J. Huang, H. Nakamura, Studies on heterocyclic compounds. 6. Synthesis and analgesic and antiinflammatory activities of 3, 4-dimethylpyrano [2, 3-c] pyrazol-6-one derivatives, J. Med. Chem. 27 (1984) 539–544. https://doi.org/10.1021/jm00370a020. DOI: https://doi.org/10.1021/jm00370a020
Μ.E.A. Zaki, E.M. Morsy, F.M. Abdel-Motti, F.Μ.E. Abdel-Megeid, The behaviour of ethyl 1-acetyl-4-aryl-5-cyano-3-methyI-1, 4-dihydropyrano [2, 3-c] pyrazol-6-ylimidoformate towards nucleophiles, Heterocycl. Commun. 10 (2004) 97–102. https://doi.org/10.1515/HC.2004.10.1.97. DOI: https://doi.org/10.1515/HC.2004.10.1.97
N. Foloppe, L.M. Fisher, R. Howes, A. Potter, A.G.S. Robertson, A.E. Surgenor, Identification of chemically diverse Chk1 inhibitors by receptor-based virtual screening, Bioorg. Med. Chem. 14 (2006) 4792–4802. https://doi.org/10.1016/j.bmc.2006.03.021. DOI: https://doi.org/10.1016/j.bmc.2006.03.021
B. Myrboh, H. Mecadon, M.R. Rohman, M. Rajbangshi, I. Kharkongor, B.M. Laloo, I. Kharbangar, B. Kshiar, Synthetic developments in functionalized pyrano [2, 3-c] pyrazoles. A review, Org. Prep. Proced. Int. 45 (2013) 253–303. https://doi.org/10.1080/00304948.2013.798566. DOI: https://doi.org/10.1080/00304948.2013.798566
M. Mamaghani, R. Hossein Nia, A review on the recent multicomponent synthesis of pyranopyrazoles, Polycycl. Aromat. Compd. 41 (2021) 223–291. https://doi.org/10.1080/10406638.2019.1584576. DOI: https://doi.org/10.1080/10406638.2019.1584576
R.K. Ganta, N. Kerru, S. Maddila, S.B. Jonnalagadda, Advances in pyranopyrazole scaffolds’ syntheses using sustainable catalysts—a review, Molecules 26 (2021) 3270. https://doi.org/10.3390/molecules26113270. DOI: https://doi.org/10.3390/molecules26113270
A.P. Katariya, A.K. Dhas, A.B. Kanagare, D.N. Pansare, D.S. Bhagat, B. Kumar, S.U. Deshmukh, Chapter 17 - Nano-catalyzed synthesis of pyranopyrazole and pyridine scaffolds, in: S. Bhunia, B. Kumar, P. Singh, R. Oraon, K.-H.B.T.-N. in G.O.S. Kim (Eds.), Adv. Green Sustain. Chem., Elsevier, 2023: pp. 485–504. https://doi.org/10.1016/B978-0-323-95921-6.00005-6. DOI: https://doi.org/10.1016/B978-0-323-95921-6.00005-6
S.V.H.S. Bhaskaruni, S. Maddila, K.K. Gangu, S.B. Jonnalagadda, A review on multi-component green synthesis of N-containing heterocycles using mixed oxides as heterogeneous catalysts, Arab. J. Chem. 13 (2020) 1142–1178. https://doi.org/10.1016/j.arabjc.2017.09.016. DOI: https://doi.org/10.1016/j.arabjc.2017.09.016
V. Hajdu, G. Muránszky, M. Nagy, E. Kopcsik, F. Kristály, B. Fiser, B. Viskolcz, L. Vanyorek, Development of high-efficiency, magnetically separable palladium-decorated manganese-ferrite catalyst for nitrobenzene hydrogenation, Int. J. Mol. Sci. 23 (2022) 6535. https://doi.org/10.3390/ijms23126535. DOI: https://doi.org/10.3390/ijms23126535
K. Asghar, M. Qasim, D. Das, Preparation and characterization of mesoporous magnetic MnFe2O4@ mSiO2 nanocomposite for drug delivery application, Mater. Today Proc. 26 (2020) 87–93. https://doi.org/10.1016/j.matpr.2019.05.380. DOI: https://doi.org/10.1016/j.matpr.2019.05.380
V.G. Jadhav, S.A. Sarode, J.M. Nagarkar, Palladium on manganese ferrite: an efficient catalyst for ligand free decarboxylative Sonogashira reaction with arene diazonium tetrafluoroborate, Tetrahedron Lett. 56 (2015) 1771–1774. https://doi.org/10.1016/j.tetlet.2015.02.029. DOI: https://doi.org/10.1016/j.tetlet.2015.02.029
W. Zhao, B. Yang, Fabrication of magnetic MnFe2O4@ HL composites with an in situ Fenton-like reaction for enhancing tetracycline degradation, J. Colloid Interface Sci. 658 (2024) 997–1008. https://doi.org/10.1016/j.jcis.2023.12.067. DOI: https://doi.org/10.1016/j.jcis.2023.12.067
G. Elmaci, D. Ozer, B. Zumreoglu-Karan, Liquid phase aerobic oxidation of benzyl alcohol by using manganese ferrite supported-manganese oxide nanocomposite catalyst, Catal. Commun. 89 (2017) 56–59. https://doi.org/10.1016/j.catcom.2016.10.027. DOI: https://doi.org/10.1016/j.catcom.2016.10.027
G. Chen, X. Zhang, Y. Gao, G. Zhu, Q. Cheng, X. Cheng, Novel magnetic MnO2/MnFe2O4 nanocomposite as a heterogeneous catalyst for activation of peroxymonosulfate (PMS) toward oxidation of organic pollutants, Sep. Purif. Technol. 213 (2019) 456–464. https://doi.org/10.1016/j.seppur.2018.12.049. DOI: https://doi.org/10.1016/j.seppur.2018.12.049
A. Chaudhari, T. Kaida, H.B. Desai, S. Ghosh, R.P. Bhatt, A.R. Tanna, Dye degradation and antimicrobial applications of manganese ferrite nanoparticles synthesized by plant extracts, Chem. Phys. Impact 5 (2022) 100098. https://doi.org/10.1016/j.chphi.2022.100098. DOI: https://doi.org/10.1016/j.chphi.2022.100098
N.M. Deraz, S. Shaban, Optimization of catalytic, surface and magnetic properties of nanocrystalline manganese ferrite, J. Anal. Appl. Pyrolysis 86 (2009) 173–179. https://doi.org/10.1016/j.jaap.2009.05.005. DOI: https://doi.org/10.1016/j.jaap.2009.05.005
V. Shakeel, I. Hussain Gul, P. John, A. Bhatti, Biocompatible gelatin-coated ferrite nanoparticles: A magnetic approach to advanced drug delivery, Saudi Pharm. J. 32 (2024) 102066. https://doi.org/10.1016/j.jsps.2024.102066. DOI: https://doi.org/10.1016/j.jsps.2024.102066
J.S. Godse, S. V Pawar, S.B. Gaikwad, V.B. Bhise, S.S. Dhotre, S.B. Ubale, R.P. Pawar, Citric Acid Mediated Synthesis of Spinel Binary Copper Manganese Oxide (CuMn2O4) Nanomaterial using Sol-Gel Method, Lett. Appl. NanoBioScience 12 (2023) 1–8. https://doi.org/10.33263/LIANBS124.180.
J.S. Godse, S.B. Gaikwad, V.B. Bhise, R.P. Pawar, S.B. Ubale, Synthesis of Co3O4 Nanomaterial with Cetyltrimethylammonium Bromide Using Sol–Gel Method in Environmentally Benevolent Aqueous Media, Adv. Sci. Eng. Med. 12 (2020) 719–722. https://doi.org/10.1166/asem.2020.2579. DOI: https://doi.org/10.1166/asem.2020.2579
J.S. Godse, S.B. Gaikwad, V.B. Bhise, S.T. Gaikwad, R.P. Pawar, Synthesis and comparative study of nano zinc oxide structures with and without cetyltrimethylammonium bromide using sol-gel method, Heterocycl. Lett. 9 (2019) 455–460.
J.S. Godse, S.B. Gaikwad, V.B. Bhise, R. Suryawanshi, S.B. Ubale, R.P. Pawar, Synthesis of Binary Manganese Cobalt Oxide (MnCo2O4) Nanomaterial in Environmentally Benign Aqueous Media, Lett. Appl. NanoBioScience 12 (2023) 1–8. https://doi.org/10.33263/LIANBS124.157.
J.S. Godse, R.P. Pawar, K. Puri, S.B. Gaikwad, S.B. Ubale, S.A. Kate, Synthesis Characterization and Antimicrobial Activity of Copper Oxide Nanoparticles Using Sol-Gel Method, Clin. Interv. Clin. Trials 1 (2023) 1–8. https://doi.org/10.59657/2993-1096.brs.23.002.
J.S. Godse, B.P. Pingle, U. Gadodia, S.B. Gaikwad, S.B. Ubale, R.P. Pawar, Green Synthesis and Characterization of Iron-Based Nanoparticles for Environmental Applications, Int. J. Sci. Res. Sci. Technol. 10 (2023) 44–50. https://ijsrst.com/home/issue/view/article.php?id=IJSRST10137.
S.B. Gaikwad, K. Puri, MnFe2O4 nanoparticle as a new and magnetically separable nanocatalyst for solvent-free synthesis of dihydropyrano [2,3-c]pyrazole derivatives, Int. J. Sci. Res. Sci. Technol. 11 (2024) 318–326. https://doi.org/10.32628/IJSRST173876. DOI: https://doi.org/10.32628/IJSRST173876
C.C. Gary, A. Catherine, Comparison and Evaluation of Antimicrobial Susceptibility Testing of Enterococci Performed in Accordance with Six National Committee Standardized Disk Diffusion Procedures, J. Clin. Microbiol. 39 (2001) 3753–3756. https://doi.org/10.1128/jcm.39.10.3753-3756.2001. DOI: https://doi.org/10.1128/JCM.39.10.3753-3756.2001
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0