Phosphate Solubilization by the Gut Microbiota of Earthworms
DOI:
https://doi.org/10.32628/IJSRST2513100Keywords:
Phosphate solubilization, Actinomycetes, Earthworm gut floraAbstract
Phosphorus is an essential macronutrient for plant growth and development, commonly present in soils but often unavailable to plants due to its low solubility and strong fixation with soil particles. Various soil microorganisms-including fungi, bacteria, and actinomycetes-play a crucial role in mobilizing this nutrient through phosphate solubilization mechanisms. Earthworms, well-known for enhancing soil structure and fertility, may also contribute to phosphorus transformation, either directly through their physiological activity or indirectly via their associated gut microbiota. However, limited information is available regarding the phosphate-solubilizing capabilities of earthworm gut microflora. In the present study, the potential of earthworm gut microbiota to solubilize phosphate was evaluated using dicalcium and tricalcium phosphate as substrates. The results demonstrated effective solubilization by several gut-associated microbes, predominantly actinomycetes. Notably, the efficiency of phosphate solubilization varied among the different microbial isolates, indicating species-specific functional capabilities within the earthworm gut ecosystem.
📊 Article Downloads
References
Rodríguez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17(4–5), 319–339. https://doi.org/10.1016/S0734-9750(99)00014-2 DOI: https://doi.org/10.1016/S0734-9750(99)00014-2
Souchie, F. F., Marriel, I. E., et al. (2006). Phosphate solubilization potential of soil microorganisms. Revista Brasileira de Ciência do Solo, 30(5), 657–664.
Kalayu, G. (2019). Phosphate solubilizing microorganisms: promising approach as biofertilizers. International Journal of Agronomy, 2019, 4917256. https://doi.org/10.1155/2019/4917256 DOI: https://doi.org/10.1155/2019/4917256
Jog, R., Pandya, M., Nareshkumar, G., & Rajkumar, S. (2014). Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology, 160(4), 778–788. DOI: https://doi.org/10.1099/mic.0.074146-0
Rodríguez, H., Gonzalez, T., & Bashan, Y. (2006). Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil, 287(1), 15–21. DOI: https://doi.org/10.1007/s11104-006-9056-9
Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1), 587. https://doi.org/10.1186/2193-1801-2-587 DOI: https://doi.org/10.1186/2193-1801-2-587
Vassilev, N., Vassileva, M., & Nikolaeva, I. (2006). Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Applied Microbiology and Biotechnology, 71(2), 137-144. DOI: https://doi.org/10.1007/s00253-006-0380-z
Tamburini F., Pfahler V., Bunemann E.K., Guelland K., Bernasconi S.M., Frossard E. (2012) Oxygen isotopes unravel the role of microorganisms in phosphate cycling in soils. Environ. Sci. Technol.;46:5956-5962.
Fixen P.E., Johnston A.M. World fertilizer nutrient reserves: A view to the future (2012). J. Sci. Food Agric;92:1001–1005. DOI: https://doi.org/10.1002/jsfa.4532
Shaarani MD.,Jia Y.s.,ArshadZIM,Man RC.,Mudal-ip,Sulaiman SZ (2018)Isolation and characterisation of Bacteria from Earthworm Intestine.Int.J Eng and Tech 7:322-325. DOI: https://doi.org/10.14419/ijet.v7i4.30.22295
Rawat, P., Das, S., Shankhdhar, D. et al. (2021) Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. J Soil Sci Plant Nutr 21, 49-68.. DOI: https://doi.org/10.1007/s42729-020-00342-7
Tate K.R (1984). The biological transformation of P in soil. Plant Soil.;76:245–256. DOI: https://doi.org/10.1007/978-94-009-6101-2_22
Tamburini F., Pfahler V., Bunemann E.K., Guelland K., Bernasconi S.M., Frossard E.(2012) Oxygen isotopes unravel the role of microorganisms in phosphate cycling in soils. Environ. Sci. Technol.;46:5956–5962. DOI: https://doi.org/10.1021/es300311h
Cordell D., Drangert J.-O., White S. (2009) The story of phosphorus: Global food security and food for thought. Global Environ. Chang.;19:292–305. DOI: https://doi.org/10.1016/j.gloenvcha.2008.10.009
Cong W.F., Suriyagoda L.D.B., Lambers H (2020). Tightening the Phosphorus Cycle through Phosphorus-Efficient Crop Genotypes. Trends Plant Sci.25 (10),967-975. https://doi.org/10.1016/j.tplants.2020.04.013 DOI: https://doi.org/10.1016/j.tplants.2020.04.013
Barka, E. A., Vatsa, P., Sanchez, L., et al. (2016). Taxonomy, physiology, and natural products of Actinobacteria. Microbiology and Molecular Biology Reviews, 80(1), 1–43. https://doi.org/10.1128/MMBR.00019-15 DOI: https://doi.org/10.1128/MMBR.00019-15
Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W., & Zhang, F. (2011). Phosphorus dynamics: from soil to plant. Plant Physiology, 156(3), 997–1005. https://doi.org/10.1104/pp.111.175232 DOI: https://doi.org/10.1104/pp.111.175232
Busby, P. E., Soman, C., Wagner, M. R., et al. (2017). Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant and Soil, 51–67.
Miransari, M. (2013). Contribution of arbuscular mycorrhizal fungi and bacteria to plant nutrition and growth. In Advances in Soil Microbiology: Recent Innovations and Future Trends (pp. 185–222).
Nosheen, S., Ajmal, I., & Song, Y. (2021). Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability, 13(4), 1868. https://doi.org/10.3390/su13041868. DOI: https://doi.org/10.3390/su13041868
Chen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lai, W. A., & Young, C. C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 34(1), 33–41. https://doi.org/10.1016/j.apsoil.2005.12.002. DOI: https://doi.org/10.1016/j.apsoil.2005.12.002
Vivas, A., Barea, J. M., Biro, B., & Azcón, R. (2006). Effectiveness of autochthonous bacterium and mycorrhizal fungus on Trifolium growth, symbiosis, and soil enzymatic activity in Zn contaminated soil. Journal of Applied Microbiology, 100:587–598. DOI: https://doi.org/10.1111/j.1365-2672.2005.02804.x
Wani, P. A., Khan, M. S., & Zaidi, A. (2007). Chromium reduction, plant growth promoting potential and metal solubilization by Bacillus sp. isolated from alluvial soil. Current Microbiology, 54:237-243. DOI: https://doi.org/10.1007/s00284-006-0451-5
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0